首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   55篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   13篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1974年   1篇
排序方式: 共有127条查询结果,搜索用时 46 毫秒
1.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Rhodospirillum rubrum was shown to be an oxygen-sensitive, nickel, iron-sulfur, and zinc-containing protein that was induced by carbon monoxide (CO). The enzyme was purified 212-fold by heat treatment, ion-exchange, and hydroxylapatite chromatography and preparative gel electrophoresis. The purified protein, active as a monomer of Mr = 61,800, existed in two forms that were comprised of identical polypeptides and differed in metal content. Form 1 comprised 90% of the final activity, had a specific activity of 1,079 mumol CO oxidized per min-1 mg-1, and contained 7 iron, 6 sulfur, 0.6 nickel, and 0.4 zinc/monomer. Form 2 had a lower specific activity (694 mumol CO min-1 mg-1) and contained 9 iron, 8 sulfur, 1.4 nickel, and 0.8 zinc/monomer. Reduction of either form by CO or dithionite resulted in identical, rhombic ESR spectra with g-values of 2.042, 1.939, and 1.888. Form 2 exhibited a 2-fold higher integrated spin concentration, supporting the conclusion that it contained an additional reducible metal center(s). Cells grown in the presence of 63NiCl2 incorporated 63Ni into CO dehydrogenase. Although nickel was clearly present in the protein, it was not ESR-active under any conditions tested. R. rubrum CO dehydrogenase was antigenically distinct from the CO dehydrogenases from Methanosarcina barkeri and Clostridium thermoaceticum.  相似文献   
2.
Nif- mutants of Azotobacter vinelandii defective in dinitrogenase activity synthesized iron-molybdenum cofactor (FeMo-co) and accumulated it in two protein-bound forms: inactive dinitrogenase and a possible intermediate involved in the FeMo-co biosynthetic pathway. FeMo-co from both these proteins could activate apo-dinitrogenase from FeMo-co-deficient mutants.  相似文献   
3.
(R)-2-Hydroxy-1,2,4-butanetricarboxylic acid [(R)-homocitrate] has been has been recently reported to be an integral constituent of the otherwise thought to be inorganic iron-molybdenum cofactor of dinitrogenase [Hoover, T.R., Imperial, J., Ludden, P.W., & Shah, V.K. (1989) Biochemistry 28,2768-2771]. Different organic acids can substitute for homocitrate in an in vitro system for iron-molybdenum cofactor synthesis and incorporation into dinitrogenase [Hoover, T.R., Imperial, J., Ludden, P.W., & Shah, V. K. (1988) Biochemistry 27, 3647-3652]. Dinitrogenase activated with homocitrate-FeMo-co was able to reduce dinitrogen, acetylene, and protons efficiently. Homoisocitrate and isocitrate dinitrogenases did not reduce dinitrogen or acetylene, but showed very high proton reduction activities. Citrate and citramalate dinitrogenases had very low dinitrogen reduction activities and intermediate acetylene and proton reduction activities. CO inhibited proton reduction in both these cases but not in the case of dinitrogenases activated with other homocitrate analogues. By use of these and other commercially available homocitrate analogues in the in vitro system, the structural features of the homocitrate molecule absolutely required for the synthesis of a catalytically competent iron-molybdenum cofactor were determined to be the hydroxyl group, the 1- and 2-carboxyl groups, and the R configuration of the chiral center. The stringency of the structural requirements was dependent on the nitrogenase substrate used for the assay, with dinitrogen having the most stringent requirements followed by acetylene and protons.  相似文献   
4.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
5.
Adenine was fed to cells of Rhodospirillum rubrum grown on glutamate. The adenine was found to be incorporated into the modifying group of the inactive form of iron protein. Adenine labelled in the 8-position ([8-3H]adenine) and the 2-position ([2-3H]adenine) was specifically incorporated into the electrophoretic 'upper-band' subunit of iron protein. Incorporation of label from the 2-position into many proteins was observed if histidine was not present in the medium. Label was removed by the activating enzyme for iron protein.  相似文献   
6.
7.
The apoplastic fluids of field-grown Zea mays and Zea luxurians plants were isolated from surface sterilized stem tissue by centrifugation and spread on agar plates containing a nitrogen-free, defined medium. The predominant bacterium isolated from these plates was characterized further. The ability of this bacterium to fix nitrogen was confirmed by its ability to grow on a semi-solid, nitrogen-free medium and reduce 15N2 to 15NH3 and acetylene to ethylene. Protions of the nifH and 16S rRNA genes from this organism were amplified by PCR and sequenced. The nifH gene, which codes for dinitrogenase reductase, from this organism is closely related to nifH from Klebsiella pneumoniae. Similarly, the 16S rRNA gene sequences and carbon utilization tests grouped it closely with K. pneumoniae. Based an these data, the isolates from Z. mays and Z. luxurians are tentatively classified as Klebsiella spp. (Zea). The ability of this bacterium to contribute to the nitrogen economy of the corn plant is unknown.  相似文献   
8.
Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacteriumRhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) fromR. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase inR. rubrum andRhizobium meliloti and undefined proteins inStreptomyces griseus andPseudomonas maltophila.  相似文献   
9.
Suppression of phaseolin and lectin accumulation in common bean resulted in higher concentrations of bean seed polypeptides with apparent molecular weights of 54 kDa and from 70 to 84 kDa on SDS-polyacrylamide gel electrophoresis. Polypeptides of 54 and 56 kDa segregated as products of different alleles. Genes for the 54/56 kDa bands and phaseolin were estimated to be 26.2±3.7 map units apart. The 54 kDa band phenotype manifested by SDS-PAGE consisted of from one to three polypeptides of 54 kDa MW on 2D gels, and the 56 kDa phenotype consisted of one polypeptide of 56 kDa plus two minor polypeptides of 54-54.5 kDa molecular weight. The pKI of these polypeptides was approximately 5.25. The methionine content of the 54 kDa polypeptides of the cultivar Great Northern Star was 1.6±0.1 g/100 g protein, which was not statistically different from the value (1.5±0.1%) obtained for phaseolin isolated by the same procedure. F2 seeds deficient for phaseolin and lectin contained as much total N per g as wild-type seeds and were not shrunken, but contained 50% more free amino acids. F2 seeds from two of the three populations contained from 8 to 13% less methionine per mg total N.  相似文献   
10.
In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase activity is regulated by ADP-ribosylation of component II in response to the addition of ammonium to cultures or to the removal of light. The ammonium stimulus results in a fast and almost complete inhibition of the in vivo acetylene reduction activity, termed switch-off, which is reversed after the ammonium is exhausted. In the present study of the response of cells to ammonium, ADP-ribosylation of component II occurred but could not account for the extent and timing of the inhibition of activity. The presence of an additional response was confirmed with strains expressing mutant component II proteins; although these proteins are not a substrate for ADP-ribosylation, the strains continued to exhibit a switch-off response to ammonium. This second regulatory response of nitrogenase to ammonium was found to be synchronous with ADP-ribosylation and was responsible for the bulk of the observed effects on nitrogenase activity. In comparison, ADP-ribosylation in R. capsulatus was found to be relatively slow and incomplete but responded independently to both known stimuli, darkness and ammonium. Based on the in vitro nitrogenase activity of both the wild type and strains whose component II proteins cannot be ADP-ribosylated, it seems likely that the second response blocks either the ATP or the electron supply to nitrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号