首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   4篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2012年   2篇
  1979年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
The formation of ecotypes has been invoked as an important driver of postglacial biodiversity, because many species colonized heterogeneous habitats and experienced divergent selection. Ecotype formation has been predominantly studied in outcrossing taxa, while far less attention has been paid to the implications of mating system shifts. Here, we addressed whether substrate‐related ecotypes exist in selfing and outcrossing populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint differs between mating systems. The North American subspecies colonized both rocky and sandy habitats during postglacial range expansion and shifted the mating system from predominantly outcrossing to predominantly selfing in a number of regions. We performed an association study on pooled whole‐genome sequence data of 20 selfing or outcrossing populations, which suggested genes involved in adaptation to substrate. Motivated by enriched gene ontology terms, we compared root growth between plants from the two substrates in a common environment and found that plants originating from sand grew roots faster and produced more side roots, independent of mating system. Furthermore, single nucleotide polymorphisms associated with substrate‐related ecotypes were more clustered among selfing populations. Our study provides evidence for substrate‐related ecotypes in A. lyrata and divergence in the genomic footprint between mating systems. The latter is the likely result of selfing populations having experienced divergent selection on larger genomic regions due to higher genome‐wide linkage disequilibrium.  相似文献   
2.
Lemoine  Melissa  Barluenga  Marta  Lucek  Kay  Mwaiko  Salome  Haesler  Marcel  Chapman  Lauren J.  Chapman  Colin A.  Seehausen  Ole 《Hydrobiologia》2019,832(1):297-315

Even though the idea that modes of speciation other than allopatric speciation are possible in nature is now widespread, compelling examples of ecological speciation in sympatry remain rare. We studied an undescribed radiation of haplochromine cichlids in a young crater lake in western Uganda, and in the small river that is nearby but has currently no known surface connection to the lake. We describe two different modes of speciation that occurred in this cichlid lineage within the past 1,500–10,000 years. Not constrained by gene flow, allopatric divergence between river and lake cichlids affects many different morphological traits as well as nuptial colouration—muted in the river, but intensified and polymorphic in lake cichlids—and neutral genetic differentiation. More surprisingly, we demonstrate a case for sympatric speciation within the small lake that is associated with dramatic differences in male breeding colouration (yellow with bright red-chest versus bright blue) and subtle differences in microhabitat, feeding regime and morphology. Reproductive isolation by assortative mating is suggested by significant differentiation between yellow and blue males in neutral markers of gene flow despite complete sympatry. We hypothesize speciation is mediated by divergent selection on sexual signalling between microhabitats.

  相似文献   
3.
Divergent lateral plate phenotypes in stickleback represent one of only a few cases known, where a single gene underlies the phenotype under divergent selection between different habitats. However, the selection pressures leading to the repeated loss of lateral plates in freshwater are still not well understood. By genotyping 838 individuals from 9 independently colonized lakes and 1 marine population in Iceland, we found 1) that only in some lakes are phenotypes associated with the expected genotype and 2) that the independent repeated occurrence of a rarely described plate phenotype is expressed in the absence of an allele that is usually associated with this phenotype. This suggests that either other genes such as modifiers might be under divergent selection between lakes or that lateral plate expression in these populations is restricted due to environmental constraints.  相似文献   
4.
Ecological speciation and adaptive radiation are key processes shaping northern temperate freshwater fish diversity. Both often involve parapatric differentiation between stream and lake populations and less often, sympatric intralacustrine diversification into habitat‐ and resource‐associated ecotypes. However, few taxa have been studied, calling for studies of others to investigate the generality of these processes. Here, we test for diversification within catchments in freshwater sculpins in a network of peri‐Alpine lakes and streams. Using 8047 and 13 182 restriction site‐associated (RADseq) SNPs, respectively, we identify three deeply divergent phylogeographic lineages associated with different major European drainages. Within the Aare catchment, we observe populations from geographically distant lakes to be genetically more similar to each other than to populations from nearby streams. This pattern is consistent with two distinct colonization waves, rather than by parapatric ecological speciation after a single colonization wave. We further find two distinct depth distribution modes in three lakes of the Aare catchment, one in very shallow and one in very deep water, and significant genomewide differentiation between these in one lake. Sculpins in the Aare catchment appear to represent an early‐stage adaptive radiation involving the evolution of a lacustrine lineage distinct from parapatric stream sculpins and the repeated onset of depth‐related intralacustrine differentiation.  相似文献   
5.
Understanding the genetic background of invading species can be crucial information clarifying why they become invasive. Intraspecific genetic admixture among lineages separated in the native ranges may promote the rate and extent of an invasion by substantially increasing standing genetic variation. Here, we examined the genetic relationships among threespine stickleback that recently colonized Switzerland. This invasion results from several distinct genetic lineages that colonized multiple locations and have since undergone range expansions, where they coexist and admix in parts of their range. Using 17 microsatellites genotyped for 634 individuals collected from 17 Swiss and two non‐Swiss European sites, we reconstruct the invasion of stickleback and investigate the potential and extent of admixture and hybridization among the colonizing lineages from a population genetic perspective. Specifically, we test for an increase in standing genetic variation in populations where multiple lineages coexist. We find strong evidence of massive hybridization early on, followed by what appears to be recent increased genetic isolation and the formation of several new genetically distinguishable populations, consistent with a hybrid ‘superswarm’. This massive hybridization and population formation event(s) occurred over approximately 140 years and likely fuelled the successful invasion of a diverse range of habitats. The implications are that multiple colonizations coupled with hybridization can lead to the formation of new stable genetic populations potentially kick‐starting speciation and adaptive radiation over a very short timescale.  相似文献   
6.
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close‐by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south‐western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub‐populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.  相似文献   
7.
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.  相似文献   
8.
Intraspecific differentiation in response to divergent natural selection between environments is a common phenomenon in some northern freshwater fishes, especially salmonids and stickleback. Understanding why these taxa diversify and undergo adaptive radiations while most other fish species in the same environments do not, remains an open question. The possibility for intraspecific diversification has rarely been evaluated for most northern freshwater fish species. Here, we assess the potential for intraspecific differentiation between and within lake populations of roach (Rutilus rutilus)—a widespread and abundant cyprinid species—in lakes in which salmonids have evolved endemic adaptive radiations. Based on more than 3,000 polymorphic RADseq markers, we detected low but significant genetic differentiation between roach populations of two ultraoligotrophic lakes and between these and populations from other lakes. This, together with differentiation in head morphology and stable isotope signatures, suggests evolutionary and ecological differentiation among some of our studied populations. Next, we tested for intralacustrine diversification of roach within Lake Brienz, the most pristine lake surveyed in this study. We found significant phenotypic evidence for ecological intralacustrine differentiation between roach caught over a muddy substrate and those caught over a rocky substrate. However, evidence for intralacustrine genetic differentiation is at best subtle and phenotypic changes may therefore be mostly plastic. Overall, our findings suggest roach can differ between ecologically distinct lakes, but the extent of intralacustrine ecological differentiation is weak, which contrasts with the strong differentiation among endemic species of whitefish in the same lakes.  相似文献   
9.
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.  相似文献   
10.
How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping‐by‐sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species’ history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large‐scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号