首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   20篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   9篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1971年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
Abstract The genomes of DNA phage ΦX174 and of RNA phage MS2 each encode a single lysis protein, E protein and L protein, respectively. Based on the known DNA and protein sequences, and with the aid of structural predictions of the proteins, a chimeric gene was constructed. The resulting protein was composed of the N-terminal sequence of E protein and the C-terminal sequence of L protein. The truncated E and L polypeptides used in this construction were functionally inactive. However, the chimeric gene product had very high lysis-inducing activity. This construction is an example which could be extended to the engineering of other lysis proteins designed with specific biotechnological processes in mind.  相似文献   
2.
Energetic and permeability properties of Escherichia coli cells were determined prior to and during lysis caused by expression of the cloned gene E of bacteriophage phi X174. Before onset of cell lysis the transmembrane gradients for K+, Na+ or Mg2+/ions, the level of ATP and the membrane potential, were unaffected. All these parameters changed simultaneously at the time of lysis onset, as monitored by measurements of culture turbidity as well as by determining the various specifications over a period of 1 min. During cell lysis chromosomal DNA was fragmented whereas plasmid DNA was liberated in its intact supercoiled form. Cytoplasmic constituents were released almost entirely, as indicated by the activity of beta-galactosidase in the supernatant fraction of protein-E-lysed cells. Periplasmic enzymes were only found in limited amounts in the cell supernatant and most remained associated with the cell ghosts. Such ghosts exhibited no gross cell damage or morphological alterations when compared with intact E. coli by light microscopy. All parameters investigated indicated that protein-E-mediated lysis of E. coli is caused by the formation of a transmembrane tunnel structure through the envelope complex of the bacterium.  相似文献   
3.
4.
ΦX174 lysis protein E-mediated lysis of Escherichia coli is characterized by a protein E-specific fusion of the inner and outer membrane and formation of a transmembrane tunnel structure. In order to understand the fusion process, the topology of protein E within the envelope complex of E. coli was investigated. Proteinase K protection studies showed that, during the time course of protein E-mediated lysis process, more of the fusion protein E-FXa-streptavidin gradually became accessible to the protease at the cell surface. These observations postulate a conformational change in protein E during induction of the lysis process by movement of the C-terminal end of the protein throughout the envelope complex from the inner side to the outer side spanning the entire pore and fusing the inner and outer membranes at distinct areas. The initiation mechanism for such a conformational change could be the cis–trans isomerization of proline residues within α-helical membrane-spanning segments. Conversion of proline 21, presumed to be in the membrane-embedded α-helix of protein E, to alanine, glycine, serine and valine, respectively, resulted in lysis-negative E mutant proteins. Proteinase K accessibility studies using streptavidin as a reporter fused to the P21G mutant protein showed that the C-terminal part of the fusion protein is not translocated to the outer side of the membrane, suggesting that this proline residue is essential for the correct folding of protein E within the cell wall complex of E. coli . Oligomerization of protein P21G-StrpA was not disturbed.  相似文献   
5.
6.
7.
Summary The ultrastructure of the lateral-line neuromasts in the ratfish, Chimaera monstrosa is described. The neuromasts rest at the bottom of open grooves and consist of sensory, supporting, basal and mantle cells. Each sensory cell is equipped with sensory hairs consisting of a single kinocilium and several stereocilia. There are several types of sensory hair arrangement, and cells with a particular arrangement form patches within the neuromast. There are two types of afferent synapse. The most common afferent synapse has a presynaptic body and is typically associated with an extensive system of anastomosing tubules on the presynaptic side. When the tubules are absent, vesicles surround the presynaptic body. These synapses are often associated into synaptic fields, containing up to 35 synaptic sites. The second type of afferent synapse does not have a presynaptic body and is not associated with the tubular system. The afferent synapses of the second type do not form synaptic fields and are uncommon. The efferent synapses are either associated with a postsynaptic sac or more commonly with a strongly osmiophilic postsynaptic membrane. The accessory cells are similar to those in the acoustico-lateralis organs of other aquatic vertebrates. A possibility of movement of the presynaptic bodies and of involvement of the tubular system in the turnover of the transmitter is discussed. A comparison of the hair tuft types in the neuromasts of Ch. monstrosa with those in the labyrinth of the goldfish and of the frog is attempted.  相似文献   
8.
9.
Bacillus stearothermophilus PV72 expresses different S-layer genes (sbsA and sbsB) under different growth conditions. No stretches of significant sequence identity between sbsA and sbsB were detected. In order to investigate S-layer gene regulation in B. stearothermophilus PV72, we characterized the upstream regulatory region of sbsA and sbsB by sequencing and primer extension analysis. Both genes are transcribed from unique but different promoters, independently of the growth phase. Localization of sbsB in the sbsA-expressing strain PV72/p6 revealed that the coding region of the second S-layer gene sbsB is located not on the chromosome but on a natural megaplasmid of the strain, whereas the upstream regulatory region of sbsB was exclusively detected on the chromosome of PV72/p6. For sbsB expression, the coding region has to be integrated into the chromosomally located expression site. After the switch to sbsB expression, the sbsA coding region was removed from the chromosome but could still be detected on the plasmid of the sbsB-expressing strain PV72/p2. The sbsA upstream regulatory region, however, remained on the chromosome. This is the first report of S-layer variation not caused by intrachromosomal DNA rearrangements, but where variant formation depends on recombinational events between the plasmid and the chromosome.  相似文献   
10.
The production of bacterial ghosts from Escherichia coli is accomplished by the controlled expression of phage phiX174 lysis gene E and, in contrast to other gram-negative bacterial species, is accompanied by the rare detection of nonlysed, reproductive cells within the ghost preparation. To overcome this problem, the expression of a secondary killing gene was suggested to give rise to the complete genetic inactivation of the bacterial samples. The expression of staphylococcal nuclease A in E. coli resulted in intracellular accumulation of the protein and degradation of the host DNA into fragments shorter than 100 bp. Two expression systems for the nuclease are presented and were combined with the protein E-mediated lysis system. Under optimized conditions for the coexpression of gene E and the staphylococcal nuclease, the concentration of viable cells fell below the lower limit of detection, whereas the rates of ghost formation were not affected. With regard to the absence of reproductive cells from the ghost fractions, the reduction of viability could be determined as being at least 7 to 8 orders of magnitude. The lysis process was characterized by electrophoretic analysis and absolute quantification of the genetic material within the cells and the culture supernatant via real-time PCR. The ongoing degradation of the bacterial nucleic acids resulted in a continuous quantitative clearance of the genetic material associated with the lysing cells until the concentrations fell below the detection limits of either assay. No functional, released genetic units (genes) were detected within the supernatant during the lysis process, including nuclease expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号