首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The International Journal of Life Cycle Assessment - Scientific Life Cycle Assessment (LCA) literature provides some examples of LCA teaching in higher education, but not a structured overview of...  相似文献   
2.
The International Journal of Life Cycle Assessment - How to apply allocation in an life cycle assessment (LCA) is a long-running and controversial debate. Consensus seems to exist on the fact that...  相似文献   
3.
The metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A. halleri cDNA library in the yeast Saccharomyces cerevisiae to search for genes conferring Zn tolerance to yeast cells. The screening revealed four A. halleri defensin genes (AhPDFs), which induced Zn but not cadmium (Cd) tolerance in yeast. The expression of AhPDF1.1 under the control of the 35S promoter in A. thaliana made the transgenic plants more tolerant to Zn than wild-type plants, but did not change the tolerance to Cd, copper (Cu), cobalt (Co), iron (Fe) or sodium (Na). Thus, AhPDF1.1 is able to confer Zn tolerance both to yeast and plants. In A. halleri, defensins are constitutively accumulated at a higher level in shoots than in A. thaliana. A. halleri defensin pools are Zn-responsive, both at the mRNA and protein levels. In A. thaliana, some but not all defensin genes are induced by ZnCl2 treatment, and these genes are not induced by NaCl treatment. Defensins, found in a very large number of organisms, are known to be involved in the innate immune system but have never been found to play any role in metal physiology. Our results support the proposition that defensins could be involved in Zn tolerance in A. halleri, and that a role for plant defensins in metal physiology should be considered.  相似文献   
4.
This work reports the first characterization of the natural variation of Zn tolerance and accumulation in Arabidopsis thaliana. Root and shoot growth as well as Zn content were determined for 27 A. thaliana accessions grown in vitro in presence of Zn concentrations ranging from 1 to 250 μm. All traits varied by at least twofold and their broad sense heritability varied from 0.36 to 0.91. Primary and lateral root developments were differently affected by Zn in the different accessions. Remarkably, Zn was for the first time shown to be essential for the development of lateral roots. As a general rule, the different traits showed uncorrelated variations. In particular, variation in Zn tolerance was not linked to either root or shoot Zn contents. The only detectable relationship between different traits linked Zn sensitivity of roots to root-to-shoot Zn translocation but the correlation between variation of these traits was pretty low. This suggests that Zn translocation from root to shoots explains only a part of Zn tolerance. Our analysis opens the way to the characterization of genetic determinants controlling different Zn-related traits through the identification of particular accessions displaying contrasted phenotypes and representing excellent starting material to develop quantitative trait locus (QTL) studies.  相似文献   
5.
We constructed and characterized the first large-insert DNA BAC library for Arabidopsis halleri, a close relative of Arabidopsis thaliana. Double size selection of high molecular weight DNA was performed to increase the average insert size. The BAC library consists of 6128 clones of which 87% have an insert size above 125 kb. Organellar DNA contamination is estimated to 1.4%. The coverage of the library is equivalent to 4.5 times the haploid genome (250 Mb), indicating the library is suitable for almost any application. We explored the possibility of generating a physical map of A. halleri using the high conserved synteny existing between this species and A. thaliana. A set of unigenes separated by 50 kb in a 850 kb region of A. thaliana chromosome II was used to probe the library. The A. halleri BAC clones isolated with these probes were grouped into two contigs. Analysis of BAC-end sequences revealed that the two A. halleri genomic contigs were highly colinear with the A. thaliana genome. Therefore, the exploitation of the conserved synteny existing between the two species will greatly facilitate the construction of a raw full physical map of A. halleri.  相似文献   
6.
The mean depth of Sr and water uptake in mixed Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stands was investigated, using natural variations of 87Sr/86Sr and 18O/16O in soils in relation to depth. Three spruce-pine pairs were studied on a podzol and a peat site in Northern Sweden. Tree leaf and wood, as well as soils, soil solutions and roots below each tree were analysed for Sr and Ca concentrations and 87Sr/86Sr ratio. The 18O/16O ratio was also determined in xylem sap and soil solutions in relation to depth. Soil solution 18O/16O decreased in relation to depth. Comparing with xylem sap 18O/16O data indicated a deeper uptake of soil water by pine than spruce on the podzol site and a superficial uptake by both species on the peat. The 87Sr/86Sr ratio of bioavailable Sr generally increased in soils in relation to depth. Contrastingly, the 87Sr/86Sr ratio in spruce wood was generally higher than in pine wood suggesting a deeper uptake of Sr by spruce. But the 87Sr/86Sr ratio and concentrations of bioavailable Sr were systematically higher below spruce than below pine. In order to explain these unexpected results, we built a simple flux model to investigate the possible effects of interspecific variations in Sr cycling, soil mineral weathering and depth of Sr uptake on soil and tree 87Sr/86Sr ratio. At the study sites, spruce cycled in litterfall up to 12 times more strontium than pine. The use of the model showed that this difference in Sr cycling could alone explain higher isotopic signatures of trees and topsoils below spruce. Besides, high isotopic signatures of roots in the A/E horizons below spruce led us to hypothesise a species-specific weathering process. Finally, the comparison between the 87Sr/86Sr ratios in wood and root or soil solutions below each species suggested that the average depth of Sr and water uptake were close, but irregular variations of the Sr isotopic ratio with depth reduce the accuracy of the results. Tree species strongly influence Sr isotopic ratios in boreal forest soils through differences in Sr cycling, and possibly through specific mineral weathering.  相似文献   
7.
Widespread ocean acidification (OA) is modifying the chemistry of the global ocean, and the Arctic is recognized as the region where the changes will progress at the fastest rate. Moreover, Arctic species show lower capacity for cellular homeostasis and acid‐base regulation rendering them particularly vulnerable to OA. In the present study, we found physiological differences in OA response across geographically separated populations of the keystone Arctic copepod Calanus glacialis. In copepodites stage CIV, measured reaction norms of ingestion rate and metabolic rate showed severe reductions in ingestion and increased metabolic expenses in two populations from Svalbard (Kongsfjord and Billefjord) whereas no effects were observed in a population from the Disko Bay, West Greenland. At pHT 7.87, which has been predicted for the Svalbard west coast by year 2100, these changes resulted in reductions in scope for growth of 19% in the Kongsfjord and a staggering 50% in the Billefjord. Interestingly, these effects were not observed in stage CV copepodites from any of the three locations. It seems that CVs may be more tolerant to OA perhaps due to a general physiological reorganization to meet low intracellular pH during hibernation. Needless to say, the observed changes in the CIV stage will have serious implications for the C. glacialis population health status and growth around Svalbard. However, OA tolerant populations such as the one in the Disko Bay could help to alleviate severe effects in C. glacialis as a species.  相似文献   
8.
Cytoskeleton modifications are required for neuronal stem cells to acquire neuronal polarization. Little is known, however, about mechanisms that orchestrate cytoskeleton remodeling along neuritogenesis. Here, we show that the silencing of the cellular prion protein (PrP(C)) impairs the initial sprouting of neurites upon induction of differentiation of the 1C11 neuroectodermal cell line, indicating that PrP(C) is necessary to neuritogenesis. Such PrP(C) function relies on its capacity to negatively regulate the clustering, activation, and signaling activity of β1 integrins at the plasma membrane. β1 Integrin aggregation caused by PrP(C) depletion triggers overactivation of the RhoA-Rho kinase-LIMK-cofilin pathway, which, in turn, alters the turnover of focal adhesions, increases the stability of actin microfilaments, and in fine impairs neurite formation. Inhibition of Rho kinases is sufficient to compensate for the lack of PrP(C) and to restore neurite sprouting. We also observe an increased secretion of fibronectin in the surrounding milieu of PrP(C)-depleted 1C11 cells, which likely self-sustains β1 integrin signaling overactivation and contributes to neuritogenesis defect. Our overall data reveal that PrP(C) contributes to the acquisition of neuronal polarization by modulating β1 integrin activity, cell interaction with fibronectin, and cytoskeleton dynamics.  相似文献   
9.
10.
Sutton  M.A.  Milford  C.  Nemitz  E.  Theobald  M.R.  Hill  P.W.  Fowler  D.  Schjoerring  J.K.  Mattsson  M.E.  Nielsen  K.H.  Husted  S.  Erisman  J.W.  Otjes  R.  Hensen  A.  Mosquera  J.  Cellier  P.  Loubet  B.  David  M.  Genermont  S.  Neftel  A.  Blatter  A.  Herrmann  B.  Jones  S.K.  Horvath  L.  Führer  E.C.  Mantzanas  K.  Koukoura  Z.  Gallagher  M.  Williams  P.  Flynn  M.  Riedo  M. 《Plant and Soil》2001,228(1):131-145
A new study to address the biosphere-atmosphere exchange of ammonia (NH3) with grasslands is applying a European transect to interpret NH3 fluxes in relation to atmospheric conditions, grassland management and soil chemistry. Micrometeorological measurements using the aerodynamic gradient method (AGM) with continuous NH3 detectors are supported by bioassays of the NH3 `stomatal compensation point' (s). Relaxed eddy accumulation (REA) is also applied to enable flux measurements at one height; this is relevant to help address flux divergence due to gas-particle inter-conversion or the presence of local sources in a landscape.Continuous measurements that contrast intensively managed grasslands with semi-natural grasslands allow a scaling up from 15 min values to seasonal means. The measurements demonstrate the bi-directional nature of NH3 fluxes, with typically daytime emission and small nocturnal deposition. They confirm the existence of enhanced NH3 emissions (e.g. 30 g N ha–1 d–1) following cutting of intensively managed swards. Further increased emissions follow fertilization with NH4NO3 (typically 70 g N ha–1 d–1). Measurements using REA support these patterns, but require a greater analytical precision than with the AGM.The results are being used to develop models of NH3 exchange. `Canopy compensation point' resistance models reproduce bi-directional diurnal patterns, but currently lack a mechanistic basis to predict changes in relation to grassland phenology. An advance proposal here is the coupling of s to dynamic models of grassland C–N cycling, and a relationship with modelled plant substrate-N is shown. Applications of the work include incorporation of the resistance models in NH3 dispersion modelling and assessment of global change scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号