首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   28篇
  416篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   28篇
  2014年   30篇
  2013年   33篇
  2012年   39篇
  2011年   24篇
  2010年   17篇
  2009年   16篇
  2008年   24篇
  2007年   18篇
  2006年   14篇
  2005年   22篇
  2004年   16篇
  2003年   23篇
  2002年   14篇
  2000年   3篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1994年   2篇
  1991年   3篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1966年   2篇
  1963年   1篇
  1960年   1篇
  1956年   2篇
  1954年   2篇
  1953年   2篇
  1952年   2篇
  1949年   1篇
  1942年   1篇
  1941年   1篇
  1940年   1篇
  1939年   1篇
  1938年   3篇
  1937年   2篇
  1936年   1篇
  1935年   2篇
  1930年   1篇
  1927年   1篇
排序方式: 共有416条查询结果,搜索用时 15 毫秒
1.
2.
3.
Mycobacteria have the ability to persist within host phagocytes, and their success as intracellular pathogens is thought to be related to the ability to modify their intracellular environment. After entry into phagocytes, mycobacteria-containing phagosomes acquire markers for the endosomal pathway, but do not fuse with lysosomes. The molecular machinery that is involved in the entry and survival of mycobacteria in host cells is poorly characterized. Here we describe the use of organelle electrophoresis to study the uptake of Mycobacterium bovis bacille Calmette Guerin (BCG) into murine macrophages. We demonstrate that live, but not dead, mycobacteria occupy a phagosome that can be physically separated from endosomal/lysosomal compartments. Biochemical analysis of purified mycobacterial phagosomes revealed the absence of endosomal/lysosomal markers LAMP-1 and β-hexosaminidase. Combining subcellular fractionation with two-dimensional gel electrophoresis, we found that a set of host proteins was present in phagosomes that were absent from endosomal/lysosomal compartments. The residence of mycobacteria in compartments outside the endosomal/lysosomal system may explain their persistence inside host cells and their sequestration from immune recognition. Furthermore, the approach described here may contribute to an improved understanding of the molecular mechanisms that determine the intracellular fate of mycobacteria during infection.  相似文献   
4.
5.
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.  相似文献   
6.
7.
8.
The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes contribute to S. Typhimurium virulence, as a glpE and pspE double deletion strain showed significantly decreased virulence in a mouse model of systemic infection. However, challenge of cultured epithelial cells and macrophages did not reveal any virulence-associated phenotypes. We hypothesized that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H2O2. Since the double mutant, which was the one affected in virulence, was not affected in this assay, we concluded that resistance to oxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxid stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise mechanism by which they contribute to virulence remains elusive.  相似文献   
9.
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.  相似文献   
10.

Background

Measurements of tumour metabolism by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) have been successfully applied to monitor tumour response after chemo- and chemo-radiotherapy and may not have the same limitations as other morphological imaging techniques. In this study it is investigated whether FDG-PET might add information on the efficacy of immune therapy.

Materials and methods

In a retrospective analysis data from patients with advanced progressive melanoma, treated with DC vaccinations and evaluated by PET/CT scans at baseline as well as after 6 vaccinations were analysed. If a patient achieved stable disease according to RECIST, additional vaccinations were given. The PET scans were evaluated according to EORTC guidelines.

Results

PET/CT scans from 13 patients were evaluated. According to RECIST 3 patients achieved stable disease and 10 patients progressed. Interestingly, when evaluated by PET scans 2 patients had partial metabolic response and 1 patient had complete metabolic response of the 2 index lesions even though a new lesion appeared simultaneously. Ten patients were seen to have stable or progressive metabolic disease.

Conclusion

By adding PET scans to the CT evaluation of patients treated with DC vaccines, a more detailed picture of the single lesions was found. This seems to improve the clinical evaluation of the treatment. The lack of correlation between the PET and CT scans suggests that some of the increases in target lesions seen in CT scans might be due to oedema or immune-infiltrates and not progression of the disease. Thus, further investigation into the contribution of PET scans to the evaluation of cancer immunotherapy is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号