首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   6篇
  203篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   8篇
  2015年   10篇
  2014年   13篇
  2013年   10篇
  2012年   21篇
  2011年   19篇
  2010年   13篇
  2009年   8篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   10篇
  2004年   4篇
  2003年   11篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1983年   1篇
  1957年   1篇
排序方式: 共有203条查询结果,搜索用时 0 毫秒
1.
2.
Malignant melanoma has the highest increase of incidence of malignancies in the western world. In early stages, front line therapy is surgical excision of the primary tumor. Metastatic disease has very limited possibilities for cure. Recently, several protein kinase inhibitors and immune modifiers have shown promising clinical results but drug resistance in metastasized melanoma remains a major problem. The need for routine clinical biomarkers to follow disease progression and treatment efficacy is high. The aim of the present study was to build a protein sequence database in metastatic melanoma, searching for novel, relevant biomarkers. Ten lymph node metastases (South-Swedish Malignant Melanoma Biobank) were subjected to global protein expression analysis using two proteomics approaches (with/without orthogonal fractionation). Fractionation produced higher numbers of protein identifications (4284). Combining both methods, 5326 unique proteins were identified (2641 proteins overlapping). Deep mining proteomics may contribute to the discovery of novel biomarkers for metastatic melanoma, for example dividing the samples into two metastatic melanoma “genomic subtypes”, (“pigmentation” and “high immune”) revealed several proteins showing differential levels of expression. In conclusion, the present study provides an initial version of a metastatic melanoma protein sequence database producing a total of more than 5000 unique protein identifications. The raw data have been deposited to the ProteomeXchange with identifiers PXD001724 and PXD001725.  相似文献   
3.
Haemosporida is a diverse group of vector-borne parasitic protozoa, ubiquitous in terrestrial vertebrates worldwide. The renewed interest in their diversity has been driven by the extensive use of molecular methods targeting mitochondrial genes. Unfortunately, most studies target a 478?bp fragment of the cytochrome b (cytb) gene, which often cannot be used to separate lineages from different genera found in mixed infections that are common in wildlife. In this investigation, an alignment constructed with 114 mitochondrial genome sequences belonging to four genera (Leucocytozoon, Haemoproteus, Plasmodium and Hepatocystis) was used to design two different sets of primers targeting the cytb gene as well as the other two mitochondrial DNA genes: cytochrome c oxidase subunit 1 and cytochrome c oxidase subunit 3. The design of each pair of primers required consideration of different criteria, including a set for detection and another for differential amplification of DNA from parasites belonging to different avian haemosporidians. All pairs of primers were tested in three laboratories to assess their sensitivity and specificity under diverse practices and across isolates from different genera including single and natural mixed infections as well as experimental mixed infections. Overall, these primers exhibited high sensitivity regardless of the differences in laboratory practices, parasite species, and parasitemias. Furthermore, those primers designed to separate parasite genera showed high specificity, as confirmed by sequencing. In the case of cytb, a nested multiplex (single tube PCR) test was designed and successfully tested to differentially detect lineages of Plasmodium and Haemoproteus parasites by yielding amplicons with different sizes detectable in a standard agarose gel. To our knowledge, the designed assay is the first test for detection and differentiation of species belonging to these two genera in a single PCR. The experiments across laboratories provided recommendations that can be of use to those researchers seeking to standardise these or other primers to the specific needs of their field investigations.  相似文献   
4.
5.
6.
Human mesenchymal stem/stromal cells (hMSC) are increasingly used in advanced cellular therapies. The clinical use of hMSCs demands sequential cell expansions. As it is well established that membrane glycerophospholipids (GPL) provide precursors for signaling lipids that modulate cellular functions, we studied the effect of the donor''s age and cell doublings on the GPL profile of human bone marrow MSC (hBMSC). The hBMSCs, which were harvested from five young and five old adults, showed clear compositional changes during expansion seen at the level of lipid classes, lipid species, and acyl chains. The ratio of phosphatidylinositol to phosphatidylserine increased toward the late-passage samples. Furthermore, 20:4n-6-containing species of phosphatidylcholine and phosphatidylethanolamine accumulated while the species containing monounsaturated fatty acids (FA) decreased during passaging. Additionally, in the total FA pool of the cells, 20:4n-6 increased, which happened at the expense of n-3 polyunsaturated FAs, especially 22:6n-3. The GPL and FA correlated with the decreased immunosuppressive capacity of hBMSCs during expansion. Our observations were further supported by alterations in the gene expression levels of several enzymes involved in lipid metabolism and immunomodulation. The results show that extensive expansion of hBMSCs harmfully modulates membrane GPLs, affecting lipid signaling and eventually impairing functionality.  相似文献   
7.
8.
Some strains of the human pathogen Streptococcus pyogenes express a surface protein called protein H, which is released from the streptococcal surface by a cysteine proteinase produced by the bacteria. Here, we find that soluble protein H binds to the surface of lymphocytes and granulocytes, and that the molecule is taken up by lymphocytes and transported to the perinuclear region. The translocation over the cell membrane is rapid, and the uptake and intracellular transportation is not dependent on actin polymerization. Protein H could be immunoprecipitated from cell extracts and nuclear preparations of lymphocytes, and analysis of molecular interactions between protein H and proteins of different cellular compartments demonstrated a binding to nucleophosmin/ B23, a protein known to shuttle between the cytoplasm and the nucleus, and to the nuclear proteins SET and hnRNP A2/B1. Nucleophosmin/B23 was co-immunoprecipitated with protein H from cell and nuclear extracts, and binding experiments, including kinetic analyses, suggest that protein H dissociating from nucleophosmin/B23 complexes in the perinuclear region or in the nucleus binds to proteins SET and hnRNP A2/B1. Finally, the uptake and intracellular transportation of protein H was found to result in a cytostatic effect on B and T lymphocytes.  相似文献   
9.
The capacity for high throughput purification (HTP) is essential in fields such as structural genomics where large numbers of protein samples are routinely characterized in, for example, studies of structural determination, functionality and drug development. Proteins required for such analysis must be pure and homogenous and available in relatively large amounts. ÄKTAT 3D system is a powerful automated protein purification system, which minimizes preparation, run-time and repetitive manual tasks. It has the capacity to purify up to 6 different His6- or GST-tagged proteins per day and can produce 1–50 mg protein per run at >90% purity. The success of automated protein purification increases with careful experimental planning. Protocol, columns and buffers need to be chosen with the final application area for the purified protein in mind.  相似文献   
10.

Background

The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer.

Materials and methods

Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1.

Results

Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号