首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1986年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有15条查询结果,搜索用时 304 毫秒
1.
The early effects of intracerebrally infused vascular endothelial growth factor (VEGF) on the blood–brain barrier (BBB) to endogenous albumin were studied using a quantitative immunocytochemical procedure. In addition, transmission electron microscopy was used to observe morphological changes induced in brain vasculature. A solution of VEGF in saline (40 ng/10 μl) was infused into the parieto-occipital cortex of mice, which were killed 10 min, 30 min, and 24 h afterwards. Untreated mice and mice that received infusion of saline only were used as controls. For immunocytochemical evaluation, ultrathin sections of immersion-fixed brain samples embedded in Lowicryl K4M were exposed to anti-albumin antiserum followed by protein A-gold. Simultaneously, other brain samples embedded in Spurr resin were used for ultrastructural examination. Morphometric and statistical analysis indicated that as soon as 10 min after infusion of VEGF, 33% of vascular profiles were leaking albumin, and this value increased at 30 min to 92%. This effect of VEGF appears to be of rather short duration because after 24 h, only 27% of vascular profiles showed signs of leakage. The results of ultrastructural observations indicate that VEGF (30 min post-infusion) induces several changes in microvascular segments located in the area of intracerebral infusion of VEGF. These changes consist of the appearance of interendothelial gaps; fragmentation of the endothelium with formation of segmental, fenestrae-like narrowings; degenerative changes of the vascular basement membrane; and the appearance of fibrin gel in the vessel lumen. At 24 h post-infusion, solitary diaphragmed fenestrae appeared in attenuated segments of the endothelium in a few microvascular profiles. These changes, which are interpreted to be preparatory steps for angiogenesis, affect the structural integrity of the vascular segments, leading to extravasation of blood plasma proteins, including albumin. © 1998 Chapman and Hall  相似文献   
2.
3.
Cryptococcus neoformans causes life-threatening meningoencephalitis, particularly prevalent in AIDS patients. The interrelationship between C. neoformans and HIV-1 is intriguing, as both pathogens elicit severe neuropathological complications. We have previously demonstrated that the HIV-1 gp41 ectodomain fragments gp41-I33 (amino acids 579-611) and gp41-I90 (amino acids 550-639) can enhance C. neoformans binding to HBMECs (human brain microvascular endothelial cells). Both peptides contain the loop region of gp41. In the present study, we used immunofluorescence microscopy and transmission and scanning electron microscopy to explore the underlying mechanisms. Our findings indicated that both C. neoformans and gp41-I90 up-regulated ICAM-1 (intercellular adhesion molecule 1) on the HBMECs and elicited membrane ruffling on the surface of HBMECs. The HIV-1 gp41 ectodomain could also induce CD44 and β-actin redistribution to the membrane lipid rafts, but it could not enhance PKCα (protein kinase Cα) phosphorylation like C. neoformans. Instead, gp41-I90 was able to induce syncytium formation on HBMECs. The results of the present study suggest HIV-1 gp41-enhanced C. neoformans binding to HBMECs via gp41 core domain-induced membrane activities, revealing a potential mechanism of invasion for this pathogenic fungus into the brain tissues of HIV-1-infected patients.  相似文献   
4.
Lectin- or glycoprotein-colloidal gold complexes were used for detection of specific monosaccharide residues in mouse brain micro-blood vessels (MBVs). The lectins tested recognize the following residues: beta-D-galactosyl (Ricinus communis agglutinin-120, RCA-1), alpha-N-acetylgalactosaminyl (Helix pomatia agglutinin, HPA), alpha-D-mannosyl and alpha-D-glucosyl (Concanavalin A, Con A), sialoglycoconjugates (Limax flavus agglutinin, LFA), N-acetylglucosaminyl and sialyl (wheat germ agglutinin, WGA), and alpha-L-fucosyl (Ulex europeus agglutinin, UEA-1). Use of these lectin-gold complexes and ultrathin sections of Lowicryl K4M-embedded tissue makes it possible to gain insights into localization of lectin receptors in the entire cross-section of MBV walls. Receptors for all lectins, except UEA-1, were found on both luminal and abluminal fronts of the endothelial cells (ECs). Differential labeling of luminal and abluminal fronts of ECs with some lectins (Con A, HPL) is considered to reflect the polarity of the endothelium. Some differences noted in the distribution of lectin receptors in the wall of representatives of three types of MBVs (capillaries, arterioles, and venules) are thought to be associated with different functions performed by the above-mentioned segments of the microvasculature in maintenance of the blood-brain barrier.  相似文献   
5.
Blood vessels from the vasculature of mouse brains during postnatal development and from human brain tumors (hemangiomas) removed at biopsy were examined immunocytochemically by transmission electron microscopy (TEM) or high-voltage transmission electron microscopy (HVEM) to determine the expression of intercellular adhesion molecule-1 (ICAM-1). In the mouse brains, ICAM-1 was shown to be initially expressed on the luminal and abluminal endothelial cell (EC) surfaces on day 3 after birth. ICAM-1 intensity increased on the luminal EC surfaces and labeled vesiculotubular profiles (VTS, defined in the present report) between days 5 and 7. After 2 weeks and at 6 months after birth, ICAM-1 labeling was weak or absent on the luminal EC surfaces. The hemangiomas presented a strong ICAM-1 reaction product on the luminal EC surfaces of small and large blood vessels associated with the VTS, with a weaker labeling of the abluminal or adventitial aspects of larger blood vessels. TEM of vesiculovacuolar structures (VVOs) within ECs from arteries and veins also demonstrated reaction product for ICAM-1 labeling. Three-dimensional stereo-pair images in the HVEM enhanced the visualization of gold particles that were attached to the inner-delimiting membrane surfaces of EC VTS, and VVOs, respectively. These observations raise the possibility that the neonatal leukocytes and tumor cells may utilize these endothelial structures as a route across the developing and injured blood-brain barrier (BBB).  相似文献   
6.
7.
The effect of aldehyde fixation on concentrations of low molecular weight constituents was determined by comparing amounts of selected intermediates in brains of mice exposed to aldehyde fixative solutions with those perfused with phosphate buffer solution alone. Aldehyde perfusion resulted in excellent preservation of cerebral cortex ultrastructure in the presence of dramatic declines in adenosine triphosphate, phosphocreatine, glucose and glucose-6-phosphate that occureed before exposure of the tissue to aldehyde fixatives. Decreases in hexose were accompanied by approximately a 4-fold increase in lactate and a 2-fold increase in pyruvate. Glycogen levels decreased by about 60% during the initial operative procedure but remained constant after aldehyde fixation. Glycogen content declined approximately 90% in tissues that were not treated with aldehyde. Concentrations of aspartate and glutamate changed only slightly during the initial period (1-5 min) and remained constant for at least 90 min in cerebral cortices fixed with aldehydes. Alanine levels increased in both fixed and unfixed tissue; however, this increase was much smaller in tissues exposed promptly to aldehydes. Total ninhydrin-positive material in perchloric acid extracts of brain decreased in mice exposed to aldehyde solutions but increased in tissues that were not. These results indicated that several amino acids may be measured reliably in tissues preserved for light and electron microscopy. In addition, determination of glutamate: alanine ratios in tissues perfused with aldehydes may provide an indication of the timing of fixation.  相似文献   
8.
The present studies examined the effects of Candida albicans yeast and hyphal morphologies on tissue pathologies and transmigration properties of the fungus in two experimental models: 1) an in vivo, neonatal rat model, and 2) a cell culture model of human brain microvascular endothelial cells (ECs) (BMVEC). We inoculated a hyphae-producing strain (CAI4-URA3) and a non-hyphae-producing strain (CAI4) of C. albicans into 4-10 day old rats and BMVEC cultures. Animals were inoculated by intraperitonal (i.p.), intranasal (i.n.), oral (p.o.) and intracerebral (i.c.) routes and several tissues were examined after 24-48 hrs. Rats inoculated i.p. with the hyphae-producing strain showed pathology in the kidneys, liver, spleen, and other tissues associated with inoculation tracks of the nose, and muscle and connective tissues of the abdominal wall. Few animals inoculated i.p., however, presented evidence of meningitis. The non-hyphae phase yeast produced neither tissue pathology nor meningitis. Animals inoculated i.c. with the hyphae strain after 1 and 3 hrs expressed minimal meningitis, with an increasing neutrophillic meningitis between 4 and 18 hrs after inoculation. At 18 hrs after i.c. inoculation, however, the inflammatory foci and brain pathology were extensive and demonstrated mycelia within the lateral ventricles associated with necrosis of adjacent brain tissue. Neutrophillic meningitis at this time period was pronounced. BMVEC co-cultured 1-2 hrs with both C. albicans strains showed EC phagocytosis of hyphae and blastospores into intercellular adhesion molecule-1 (ICAM-1)-labeled caveolae suggesting a transcellular role for ICAM-1 in the internalization process of C. albicans.  相似文献   
9.
10.
A simple method for rapidly screening and evaluating many areas of central nervous system tissue before and after flat embedding in Beem capsules is described. This method uses light microscopy to select regions surrounding needle track injuries of brain tissue for subsequent fine structural and enzyme cytochemical analysis of the blood-brain barrier. The mouse cerebral cortex was sectioned with a tissue chopper at 40-50 μm and reacted with diaminobenzidine to demonstrate the presence of exogenous horseradish peroxidase near an injured central nervous system site. Following the enzyme reaction, both osmicated and unosmicated tissue slices were processed for routine electron microscopy, infiltrated with unpolymerized resin, and evaluated on glass slides by light microscopy prior to flat embedding and polymerization. Numerous tissue specimens can be screened in this way for maximum information per tissue slice, and extra tissue samples can be polymerized on the glass slides and conveniently stored for future sectioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号