首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   9篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   14篇
  2011年   11篇
  2010年   10篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   12篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   8篇
  1973年   6篇
  1972年   2篇
  1970年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
2.
Summary The presence of house dust mites and storage mites in dumpsters was investigated in 3 different areas of Venice hinterland. The aim of this study was to find a relationship between some reported respiratory symptoms among 6 workers who were responsible for moving the dumpsters to the truck and the bio-aerosol released from such operation. These symptoms were closely related to the work and after allergological evaluation we found sensitisation to house dust mites in all 6 employees. The mine exposure in the workplace was assessed by a standardized sampling and analysis of dust obtained after brushing the inside surfaces of dumpsters. In 50% of the specimens (10/20) we found mites belonging to the following families: Pyroglyphidae (Dermatophagoides spp.), Acaridae (Acarus siro) and a lower amount of Cheyletidae (Cheyletus spp.). An indirect test (guanine test) was also performed and gave positivity in 16 dust samples (80%). The insides of dumpsters showed to be an optimal environment for mites survival and reproduction because of cracks and grooves on the walls, the high humidity level and the presence of mould. These mites probably come from dwelling places and other environments (markets, slaughters-houses, farms, etc.). This suggests that mites allergens can be released during rubbish discharging from the dumpsters and represent a possible risk for the employees.  相似文献   
3.
Experimental observations reveal a number of characteristics of the redox-linked proton ejection from cytochrome c oxidase vesicles, which apparently cannot be explained by a proton pumping activity of the oxidase. These observations seem, on the other hand, to provide useful elements for alternative explanation(s) of the proton ejection. It is proposed here that the process is scalar and not vectorial and can derive from redox-linked rupture of protonated salt-bridges in the oxidase-lipid complex.  相似文献   
4.
5.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
6.
The iron-sulfur protein present in the mitochondrial outer membrane has been partially purified from beef kidney cortex mitochondria by means of selective solubilization followed by DEAE-cellulose chromatography. The EPR spectrum of the iron-sulfur protein with g-values at 2.01, 1.94 and 1.89 was well resolved up to 200 K which is unusual for an iron-sulfur protein. Analyses confirmed a center with two iron and two labile sulfur atoms in the protein. By measuring the effect of oxidation-reduction potential on the EPR signal amplitude, midpoint potentials at pH 7.2 were determined both for the purified iron-sulfur protein, +75 (+/- 5) mV, and in prepared mitochondrial outer membrane, +62 (+/- 6) mV. At pH 8.2 slightly lower values were indicated, +62 and 52 mV, respectively. The oxidation-reduction equilibrium involved a one electron transfer. A functional relationship to the rotenone-insensitive NADH-cytochrome c oxidoreductase in the mitochondrial outer membrane is suggested. Both this activity and the iron-sulfur center were sensitive to acidities slightly below pH 7 in contrast to the iron-sulfur centers of the inner membrane.  相似文献   
7.
8.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   
9.
10.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号