首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   25篇
  国内免费   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  1999年   6篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1978年   12篇
  1977年   5篇
  1976年   4篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   2篇
  1966年   3篇
  1965年   2篇
  1964年   2篇
  1961年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有270条查询结果,搜索用时 93 毫秒
1.
2.
3.
4.
Effects of paralysis with pancuronium on chest wall statics in awake humans   总被引:2,自引:0,他引:2  
The influence of tonic inspiratory muscle activity on the relaxation characteristics of the chest wall, rib cage (RC), and abdominal wall (ABW) has been investigated in four highly trained subjects. Chest wall shape and volume were estimated with magnetometers. Pleural pressure (Pes) and abdominal pressure were measured with esophageal and gastric balloons, respectively. Subjects were seated reclining 30 degrees from upright, and respiratory muscle weakness was produced by pancuronium bromide until RC inspiratory capacity was decreased to 60% of control. Only minor changes were observed for Konno-Mead relaxation characteristics (RC vs. ABW) between control and paralysis. Similarly, although RC relaxation curves (RC vs. Pes) during paralysis were significantly different from control (P less than 0.05), the changes were small and not consistent. The differences between paralysis-induced changes in resting end-expiratory position of the chest wall and helium-dilution functional residual capacity (FRC) suggested changes in volume of blood within the chest wall. We conclude that 1) although tonic inspiratory activity of chest wall muscles exists, it does not significantly affect the chest wall relaxation characteristics in trained subjects; 2) submaximal paralysis produced by pancuronium bromide is likely to modify either spinal attitude or the distribution of blood between extremities and the thorax; these effects may account for the changes in FRC in other studies.  相似文献   
5.
Loring Craymer 《Genetics》1984,108(3):573-587
Translocations have long been valued for their segregational properties. This paper extends the utility of translocations by considering recombinational derivatives of pairs of simple reciprocal translocations. Three major derivative structures are noted. One of these derivatives is suitable for use in half-tetrad experiments. A second should find use in recombining markers with translocation breakpoints. The third is an insertional-tandem duplication: it has a section of one chromosome inserted into a heterologue with a section of the latter chromosome tandemly repeated about the breaks of the insert. All of these structures are contained in "constellations" of chromosomes that regularly segregate aneuploid-1 products (informationally equivalent to nonrecombinant adjacent-1 segregants) for one of the parental translocations but do not segregate euploid products. This is in contrast to the parental T1/T2 constellations which segregate euploid products but not aneuploid-1 products. Methods are described for selecting translocation recombinants on the basis of this dichotomy. Several examples of translocation recombinants have been recovered with these techniques, and the recombination frequencies seem to be consistent with those observed for crossovers between inversion breakpoints. Recombinant chromosomes tend to disjoin, but it is observed that the tendency may vary according to the region involved in the recombination, and it is suggested that this difference reflects a difference in chiasmata terminalization times. Special consideration is given to insertional-tandem duplications. Large insertional-tandem duplications are useful in cytogenetic screens. Small insertional-tandem duplications are useful in gene dosage studies and other experiments that require an insert from one chromosome to another. Large duplications can be deleted to form small duplications. To generate a small insert for a specified region, it is only necessary to have one translocation with a breakpoint flanking the region of interest. The second translocation can have a breakpoint quite far from the region: an insertional-tandem duplication containing the region that has one closely flanking breakpoint can be deleted to create a smaller duplication that has two closely flanking breakpoints.  相似文献   
6.
We measured the effective resistance (Reff) and elastance (Eeff) of the chest wall in four subjects, relaxed at functional residual capacity (FRC), during sinusoidal volume changes (5% vital capacity up to 4 Hz) delivered at the mouth. Subjects sat in a head-out body plethysmograph, and transthoracic pressure was measured with an esophageal balloon. Changes in Reff and in Eeff with frequency were nearly the same in all subjects. Reff (in cmH2O X l-1 X s) was 2.9 +/- 0.8 at 0.2 Hz and fell sharply to minimum values (0.5-0.9) at 1-4 Hz. Eeff (in cmH2O X l-1) increased from approximately 10 at the lowest frequency to a plateau of about 15 at 1-3 Hz and decreased above 3 Hz. In the same subjects, we measured the relative magnitude and phase between the displacements of different parts of the chest wall with magnetometers during identical sinusoidal forcing. Results indicate that the chest wall expands and deflates uniformly at frequencies up to 1 Hz. Thereafter the abdomen makes relatively larger excursions, and the relative magnitude and phase of displacement at different points on the chest wall show complex changes. We conclude that the frequency dependence of Reff and Eeff below 1 Hz is not due to nonuniformities in displacement of different parts of the chest wall. The frequency dependency of Reff is consistent with an increasing contribution of rate-independent plastic dissipation to the pressure difference in phase with flow as breathing frequency decreases.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号