首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有65条查询结果,搜索用时 46 毫秒
1.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
2.
The modification of a target DNA by alkylating oligonucleotide derivatives possessing various capacities for complex formation was studied. The binding properties of oligonucleotides were changed either by increasing their length (tetra-, octa-, and dodecamers) or by introducing a point substitution and/or an N-(2-hydroxyethylphenazinium) residue. It was found that conformational changes occurring in the structure of the target.reagent complex upon elevating the reaction temperature affect the efficiency and site-specificity of the alkylation. In the case of complete saturation of the target with the reagent, an increase in the hybridization ability of the reagent reduced the efficiency of the target modification. It was found that the modification by the tetranucleotide reagent (in the presence of an effector adjacent to the 3' end) occurs exclusively at an intracomplex target base. In the case of the dodecamer, which forms a stable, highly cooperative complex with the target, several bases of the target undergo alkylation, and an increase in temperature changes the site-specificity of alkylation. In this process, the redistribution of the target modification sites toward stronger nucleophilic centers enhances alkylation at temperatures near the melting temperature of the target.dodecanucleotide complex despite a decrease in the extent of target association.  相似文献   
3.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
4.
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove.  相似文献   
5.
Primers that contain portions noncomplementary to the target region are usually used to add to the PCR product a utility sequence such as a restriction site or a universal probe binding site. We have demonstrated that primers with short 5'AT-rich overhangs increase real-time PCR fluorescent signal. The improvement is particularly significant for difficult to amplify templates, such as highly variable viral sequences or bisulfite-treated DNA.  相似文献   
6.
The comparative proteomic study of cell surfaces of native and drug-treated cancer cells was performed. To this end, cell proteomic footprinting, which reflects the mass spectrometry profiling of cell surface proteins, was applied to breast adenocarcinoma cells (MCF-7), which were untreated or treated with doxorubicin, tamoxifen, or etoposide. The footprints of drug-treated cells were compared with the footprints of untreated cells and the footprint of a randomly selected control cancer cell culture. It was found that drug-treated cells have reproducible, pronounced, and drug-specific changes in cell surface protein expression. Cytotoxicity assays, which are an in vitro model of human antitumor vaccination, revealed that the degree of these changes correlates directly with the ability of the cancer cells to escape cell death induced by a cytotoxic T-cell-mediated immune response. Moreover, cancer cells escape from the immune response was linearly approximated (R(2) equal to 0.99) with the degree by which their proteomic footprints diverged from the footprint of the targeted (native) cancer cells. From these findings, it was concluded that the design of anticancer vaccines intended to prevent cancer recurrence after primary treatment should consider the drug-specific changes in cancer cell-surface antigens. Such changes can be easily identified by cell proteomic footprinting, renewing hopes for development of efficient cellular cancer vaccines.  相似文献   
7.
8.

Objective

Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).

Methods

We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.

Results

Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.

Conclusion

Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.  相似文献   
9.
10.
Two simple methods for the synthesis of oligonucleotides bearing a N-(2-hydroxyethyl)phenazinium (Phn) residue at the 5'- and/or 3'-terminal phosphate groups are proposed. By forming complexes between a dodecanucleotide d(pApApCpCpTpGpTpTpTpGpGpC), a heptanucleotide d(pCpCpApApApCpA), and Phn derivatives of the latter, it is shown that the introduction of a dye at the end of an oligonucleotide chain strongly stabilizes its complementary complexes. The Tmax and the thermodynamic parameters (delta H, delta S, delta G) of complex formation were determined. According to these data, coupling of a dye with the 5'-terminal phosphate group is the most advantageous: delta G(37 degrees C) is increased by 3.59 +/- 0.04 kcal/mol compared to 2.06 +/- 0.04 kcal/mol for 3'-Phn derivatives. The elongation of the linker, which connects the dye to the oligonucleotide, from a dimethylene up to a heptamethylene usually leads to destabilization of the oligonucleotide complex. The complementary complex formed by the 3',5'-di-Phn derivative of the heptanucleotide was found to be the most stable among all duplexes investigated. Relative to the unmodified complex the increase in free energy was 4.96 +/- 0.04 kcal/mol. The association constant of this modified complex at 37 degrees C is 9.5 x 10(6) M-1, whereas the analogous value for the unmodified complex is only 3 x 10(3) M-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号