首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   32篇
  418篇
  2022年   5篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   3篇
  2015年   18篇
  2014年   12篇
  2013年   15篇
  2012年   22篇
  2011年   21篇
  2010年   20篇
  2009年   17篇
  2008年   15篇
  2007年   14篇
  2006年   19篇
  2005年   12篇
  2004年   11篇
  2003年   13篇
  2002年   15篇
  2001年   10篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   7篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   12篇
  1974年   2篇
  1973年   2篇
  1968年   3篇
  1967年   4篇
  1964年   2篇
排序方式: 共有418条查询结果,搜索用时 0 毫秒
1.
Sea turtles     
  相似文献   
2.
3.
    
Abstract: White-tailed deer (Odocoileus virginianus) are important game mammals and potential reservoirs of diseases of domestic livestock; thus, diseases of deer are of great concern to wildlife managers. Contact, either direct or indirect, is necessary for disease transmission, but we know little about the ecological contexts that promote intrasexual contact among deer. Using pair-wise direct contacts estimated from Global Positioning System collar locations and joint utilization distributions (JUDs), we assessed habitats in which contacts occur to test whether direct contact rates among female white-tailed deer in different social groups differs among land-cover types. We also tested whether contact rates differed among seasons, lunar phases, and times of day. We obtained locations from 27 female deer for periods of 0.5–17 months during 2002–2006. We designated any simultaneous pair of locations for 2 deer <25 m apart as a direct contact. For each season, we used compositional analysis to compare land-cover types where 2 deer had contact to available land-cover weighted by their JUD. We used mixed-model logistic regression to test for effects of season, lunar phase, and time of day on contact rates. Contact rates during the gestation season were greater than expected from random use in forest and grassland cover, whereas contact rates during the fawning period were greater in agricultural fields than in other land-cover types. Contact rates were greatest during the rut and lowest in summer. Diel patterns of contact rates varied with season, and contact rates were elevated during full moon compared to other lunar periods. Both spatial and temporal analyses suggest that contact between female deer in different social groups occurs mainly during feeding, which highlights the potential impact of food distribution and habitat on contact rates among deer. By using methods to associate contacts and land-cover, we have created beneficial tools for more elaborate and detailed studies of disease transmission. Our methods can offer information necessary to develop spatially realistic models of disease transmission in deer.  相似文献   
4.
Appearance is known to influence social interactions, which in turn could potentially influence personality development. In this study we focus on discovering the relationship between self-reported personality traits, first impressions and facial characteristics. The results reveal that several personality traits can be read above chance from a face, and that facial features influence first impressions. Despite the former, our prediction model fails to reliably infer personality traits from either facial features or first impressions. First impressions, however, could be inferred more reliably from facial features. We have generated artificial, extreme faces visualising the characteristics having an effect on first impressions for several traits. Conclusively, we find a relationship between first impressions, some personality traits and facial features and consolidate that people on average assess a given face in a highly similar manner.  相似文献   
5.
6.
The architecture and weights of an artificial neural network model that predicts putative transmembrane sequences have been developed and optimized by the algorithm of structure evolution. The resulting filter is able to classify membrane/nonmembrane transition regions in sequences of integral human membrane proteins with high accuracy. Similar results have been obtained for both training and test set data, indicating that the network has focused on general features of transmembrane sequences rather than specializing on the training data. Seven physicochemical amino acid properties have been used for sequence encoding. The predictions are compared to hydrophobicity plots.  相似文献   
7.
8.
9.
10.
    
An analysis of the variability in the composition and distribution of Pacific Late Miocene calcareous nannoplankton about their average biogeography shows that there are primarily two environmental factors causing that variability, climate and dissolution. Climate produces a latitudinal, biogeographic differentiation of the Late Miocene nannoflora, while selective dissolution superimposes a bathymetric differentiation of the nannoflora on that due to climate. Together, these two factors produce three distinct Late Miocene nannofloral assemblages, a high-latitude, temperate assemblage characterized by Reticulofenestra pseudoumbilica and Coccolithus pelagicus, and two tropical assemblages, their differences in composition depending on water depth and surface-water productivity: (1) in shallower water and beneath areas of higher organic production and sedimentation of calcite there is an undissolved assemblage characterized by sphenoliths, small elliptical placoliths and Coccolithus pataecus; (2) in deeper water and areas of lower productivity there is a dissolved assemblage dominated by discoasters.Selective dissolution produces most of the apparent biogeographic variation in Pacific Late Miocene nannoplankton compositions, the variation in compositions observed between the seventeen sites studied. Dissolution preferentially removes the more soluble constituents of the tropical nannoflora so that increasing dissolution tends to give tropical nannoflora a cooler, more temperate aspect. At the same time, selective dissolution shifts the composition of the warmer, tropical component towards its more resistant taxa.Nannoplankton records show a period of greatly decreased calcite dissolution in deep tropical and temperate South Pacific sites between about 8 and 10 m.y. ago. This decrease is strongly correlated with a temporary increase in the 13C composition of Pacific deep waters. Calcite dissolution increased during this same period in the deep North Pacific.Nannoplankton records of Late Miocene climate in the tropics are distinctly different from those at higher, south temperate latitudes. Tropical records show a sharp warming in the earliest Late Miocene after a generally cool late Middle Miocene. This was followed by a temporary cooling, nearly to Middle Miocene levels, about 7 m.y. ago. Toward the end of the Late Miocene, the tropical Pacific warmed again and remained warm into the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern the Pliocene. Warming of temperate climates occurred much later. Not until latest Miocene did the southern temperate latitudes warm appreciably. Southern subpolar climate cooled continuously through the Late Miocene. We attribute the resulting increases in the latitudinal climatic contrast across the southern Pacific Ocean to the development and migration of a strong subtropical convergence.On the basis of the nannoplankton oceanographic records we postulate that beginning about 10.5 m.y. ago Pacific surface circulation became primarily zonal and the production of deep and bottom waters in the Southern Ocean increased sharply. This produced a northward decrease in calcite preservation, an increase in benthic 13C, and a strong climatic gradient across southern latitudes. The period of most vigorous deep Pacific circulation ended 7 m.y. ago in response, we speculate, to the reduced ocean salinities during the Messinian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号