首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   10篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
Results are presented from experimental investigations of the angular distributions and energy spectra of fast ions produced in deuterium polyethylene targets under irradiation by picosecond laser pulses with intensities of up to 2 × 1018 W/cm2 in the SOKOL-P facility. The parameters of ion fluxes were measured by time-of-flight spectrometers based on semiconductor detectors.  相似文献   
2.
Potassium ions are vital for maintaining functionality of K channels. In their absence, many K channel types enter a long-lasting defunct condition characterized by absence of conductance and drastic changes in gating current. We show that channels pass through a dilated condition with altered selectivity as they are becoming defunct. To characterize these abnormalities we examined gating and ionic currents generated by Shaker IR and by three nonconducting mutants, W434F, D447N, and Y445A, in 0 K+. On entering the dilated condition, Shaker IR becomes permeable to Na+ and tetramethylammonium-positive (TMA+), signaling deformation of the selectivity filter. When dilated, nearly normal closing is possible at -140 mV. At -80 mV, however, closing is very slow and channels stray from the dilated into the defunct condition. Restoration from defunct to dilated condition requires tens of seconds at 0 mV and can occur in the absence of K+. W434F and D447N are similar to Shaker IR, showing Na+ and TMA+ permeability when dilated. The defunct gating currents are similar in Shaker IR and these two mutants and are reminiscent of the early transitions of normal gating. Y445A does not become defunct and shows Na+ but not TMA+ permeability on K+ removal.  相似文献   
3.
In potassium-free solutions some types of K channels enter a long-lasting nonconducting or "defunct" state. It is known that Shaker K channels must open in K+-free solutions to become defunct. Gating current studies presented here indicate an abnormal conformation in the defunct state that restricts S4 movement and alters its kinetics. Thus an abnormality initiated in the P region spreads to the gating apparatus. We find that channels most readily become defunct on repolarization to an intermediate voltage, thus prolonging occupancy of one of the several intermediate closed states. The state dependence of becoming defunct was further dissected by using the gating mutant L382A. Simply closing this channel at 0 mV (reversing the last activation step) does not make the mutant channel defunct. Instead, it is necessary to move further left (more fully closed) in the activation sequence. This was confirmed with ShIR experiments showing that channels become defunct only if there is inward gating charge movement. Rapid transit through the intermediate states, achieved at very negative voltage, is relatively ineffective at making channels defunct. Several mutations that removed C-type inactivation also made the channels resistant to becoming defunct. Our results show that normal gating current cannot be stably recorded in the absence of K+.  相似文献   
4.
BACKGROUND: Skin injury leads to the release of heme, a potent prooxidant which is degraded by heme oxygenase-1 (HO-1) to carbon monoxide, iron, and biliverdin, subsequently reduced to bilirubin. Recently the involvement of HO-1 in angiogenesis has been shown; however, the role of heme and HO-1 in wound healing angiogenesis has not been yet investigated. RESULTS: Treatment of HaCaT keratinocytes with hemin (heme chloride) induced HO-1 expression and activity. The effect of heme on vascular endothelial growth factor (VEGF) synthesis is variable: induction is significant after a short, 6 h treatment with heme, while longer stimulation may attenuate its production. The involvement of HO-1 in VEGF synthesis was confirmed by inhibition of VEGF expression by SnPPIX, a blocker of HO activity and by attenuation of HO-1 mRNA expression with specific siRNA. Importantly, induction of HO-1 by hemin was able to overcome the inhibitory effect of high glucose on VEGF synthesis. Moreover, HO-1 expression was also induced in keratinocytes cultured in hypoxia, with concomitant augmentation of VEGF production, which was further potentiated by hemin stimulation. Accordingly, conditioned media from keratinocytes overexpressing HO-1 enhanced endothelial cell proliferation and augmented formation of capillaries in angiogenic assay in vitro. CONCLUSIONS: HO-1 is involved in hemin-induced VEGF expression in HaCaT and may play a role in hypoxic regulation of this protein. HO-1 overexpression may be beneficial in restoring the proper synthesis of VEGF disturbed in diabetic conditions.  相似文献   
5.
Parkinson's disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD.  相似文献   
6.

Background

Heme oxygenase-1 (HO-1) is induced in many cell types as a defense mechanism against stress. We have investigated the possible role of endogenous HO-1 in the effector phase of arthritis using the K/BxN serum transfer model of arthritis in HO-1 heterozygous and homozygous knock-out mice.

Methodology/Principal Findings

Arthritis was induced in C57/Black-6 xFVB (HO-1+/+, HO-1+/− and HO-1−/−) mice by intraperitoneal injection of 150 µl serum from arthritic K/BxN mice at days 0 and 2. Blood was collected and animals were sacrificed at day 10. Histological analysis was performed in ankle sections. The levels of inflammatory mediators were measured in serum and paw homogenates by enzyme-linked immunosorbent assay or Multiplex technology. The incidence of arthritis was higher in HO-1+/− and HO-1−/− groups compared with HO-1+/+. The inflammatory response was aggravated in HO-1+/− mice as shown by arthritic score and the migration of inflammatory cells that could be related to the enhancement of CXCL-1 production. In addition, the HO-1+/− group showed proteoglycan depletion significantly higher than HO-1+/+ mice. Serum levels of matrix metalloproteinase-3, monocyte chemotactic protein-1, plasminogen activator inhibitor-1, E-selectin and intercellular adhesion molecule-1 were increased in arthritic HO-1−/− mice, whereas vascular endothelial growth factor and some cytokines such as interferon-γ showed a reduction compared to HO-1+/+ or HO-1+/− mice. In addition, down-regulated gene expression of ferritin, glutathione S-reductase A1 and superoxide dismutase-2 was observed in the livers of arthritic HO-1+/− animals.

Conclusion/Significance

Endogenous HO-1 regulates the production of systemic and local inflammatory mediators and plays a protective role in K/BxN serum transfer arthritis.  相似文献   
7.
Potamotrygon marquesi, sp. nov., is described and compared with other species of Potamotrygon occurring in the Amazon Basin. The identity of this new species is supported by an extensive external and internal morphological study including coloration pattern, squamation, skeleton and ventral lateral-line canals. Morphometrics and meristics were used to further distinguish P. marquesi from congeners. Potamotrygon marquesi was first considered to fall within the range of variation found in P. motoro. However, even with an extensive variation in coloration observed in P. motoro, this new species presents a series of autapomorphies that confidently distinguishes it from what is understood as the morphological variation found in P. motoro. Additional morphological characters that diagnose P. marquesi include three angular cartilages, asymmetrical star-shaped denticles, a single regular row of spines on tail dorsum, lateral row of caudal spines near the sting insertion, dorsal disc background in beige and grey mixed with shades of grey and bearing open and closed bicolored rings, among others. Although presenting a gap of distribution along the west–east extension of the Amazon Basin, its diagnostic charactistics are consistent in both recorded regions. Our study supports the need for many morphological characters to robustly distinguish members of Potamotrygoninae considering their extremely variable dorsal disc color pattern.  相似文献   
8.
The Drosophila retina has an autonomous peripheral circadian clock in which the expression of the gene encoding heme oxygenase (HO) is under circadian control with the ho mRNA peaking at the beginning of the day and in the middle of the night. The function of HO in the retina is unknown, but we observed that it regulates the circadian clock and protects photoreceptors against DNA damage. The decline in HO level increases and decreases the expression of the canonical clock genes period (per) and Clock (Clk), respectively. The opposite result was observed after increasing HO expression. Among three products of HO activity—carbon monoxide (CO), ferrous ions, and biliverdin—the latter has no effect on per and Clk expressions, but CO exerts the same effect as the increase of ho expression. This suggests that HO action on the clock is mediated by CO, which may affect Clk expression during the day and the level of per expression. While ho expression is not stimulated by nitric oxide (NO), NO has the same effect on the clock as HO, increasing Clk expression and decreasing the expression of per.  相似文献   
9.
10.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号