首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2006年   1篇
  2005年   7篇
  2004年   1篇
  2003年   7篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   8篇
  1995年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
2.
New analogues of deltorphin I (DT I), in which the phenylalanine residue in position 3 is substituted with amphiphilic alpha,alpha-disubstituted amino acid enantiomers, (R) and (S)-alpha-hydroxymethylnaphtylalanine, were synthesized and tested for mu and delta opioid receptor affinity and selectivity. Although both analogues have lower affinity to delta receptors than DT I, they both expressed specificity to delta receptors.  相似文献   
3.
The biological effects of Nerve Growth Factor (NGF) are primarily mediated via its high affinity receptor-TrkA. In the present study, we examined the effect of experimental autoimmune encephalomyelitis (EAE) upon the expression of TrkA in neuronal and non-neuronal cells of the spinal cord of Lewis rats during the acute (14 days postimmunization) and chronic (12 months postimmunization) phases of the disease. In the normal spinal cord, both of mature and aged rats, we found TrkA immunoreaction (TrkA-IR) in the motoneurons of the Rexed lamina IX and in both oligo- and astroglia cells. In the acute phase of the disease, we found a reduction of TrkA immunoreactivity in motoneurons and its up-regulation in oligodendroglia, mainly in the white matter. We also confirmed our previous findings concerning the up-regulation of TrkA-IR in astroglia. Both neuronal and non-neuronal changes of TrkA immunoreactivity had a transient character: they were not seen in the chronic phase of the disease. Our results suggest that both neuronal and glial TrkA expression changes depend on inflammation. Moreover, our data indicate that, during the acute phase of EAE, the glial cells become more receptive to NGF, pointing to glia as an important target for pharmacological manipulations, particularly for exogenously administered NGF.  相似文献   
4.
Previous studies of structure-activity of biphalin defined fragments which expressed the full biological potency of the parent compound. The most simple fragment was Tyr-D-Ala-Gly-Phe-NH-NH<--X, where X=Phe, but it also could be other hydrophobic amino acids. This paper presents data that replacement of the phenylalanine with a dansyl (X=DNS) groups gives an analogue (AA2016) that fully preserves the high affinity of the initial analogue for both mu and delta opioid receptors. In the tail flick test in rats, intrathecal injection of the compound produces strong antinociception, comparable to the parent biphalin. Because AA2016 contains a strong fluorescent group, it can be a very useful tool for prospective studies in vivo, including biological barrier permeability, tissue distribution, metabolism and receptor-ligand complex formation.  相似文献   
5.
Potentiometric titrations of the cytochrome c oxidase (CcO) immobilized in a biomimetic membrane system were followed by two-dimensional surface-enhanced IR absorption spectroscopy (2D SEIRAS) in the ATR-mode. Direct electron transfer was employed to vary the redox state of the enzyme. The CcO was shown to undergo a conformational transition from a non-activated to an activated state after it was allowed to turnover in the presence of oxygen. Differences between the non-activated and activated state were revealed by 2D SEIRA spectra recorded as a function of potential. The activated state was characterized by a higher number of correlated transitions as well as a higher number of amino acids associated with electron transfer.  相似文献   
6.
New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   
7.
Kosson P  Bonney I  Carr DB  Lipkowski AW 《Peptides》2005,26(9):1667-1669
Soon after the discovery of endomorphins several studies indicated differences between pharmacological effects of endomorphins and other MOR selective ligands, as well as differences between the effects of endomorphin I and endomorphin II. We now propose that these differences are the result of an additional non-opioid property of endomorphins, namely, their weak antagonist properties with respect to tachykinin NK1 and NK1 receptors.  相似文献   
8.
Summary This article presents kinetic studies of cross interaction of β-amyloid peptide and prion protein fragments. Syntheses of three peptides (β25-35, β22-35 and PrP 109–126) were performed. Those peptides were used for aggregation studies in PBS and TRIS buffers using HPLC with DAD detector. Comparison of aggregation of peptides alone and in combination with other fragments was investigated. In all cases aggregation was faster in PBS than in TRIS solution. Obtained results suggest that β-amyloid peptide and prion protein may interact to form macromolecular complexes with different ability for aggregation.  相似文献   
9.
Oxytocin (OT) was synthesized employing the solid phase method. Resins made of copolymers of polystyrene-1%-crosslinked with divinylbenzene gave better yields (73-95%) of Z-Cys(Bzl)-Tyr(Bzl)-Ile-Gln-Asn-Cys(Bzl)-Pro-Leu-Gly-NH2 (I) than 2%-crosslinked resins (10--56%). Reduction of I with Na-liq.NH3 and oxidation with I2-MeOH at -40 degrees minimized dimer and polymer formation, and resulted in good yields (49--54%) of OT. The large volumes of MeOH required when several grams of I are reduced and then oxidized were rapidly evaporated in vacuo, and the residue was desalted by dissolving the peptide in a small volume of glacial acetic acid and filtering to remove the salt. OT was purified by adsorption chromatography on a silica gel column with combinations of MeOH-CHCl3 of graded polarity. Oxytocin elutes with 33% MeOH-CHCl3. After two purification steps by adsorption chromatography, the resulting OT was found to be homogeneous. The hormone was characterized chemically and found to be active biologically.  相似文献   
10.
The opioid antagonist properties of nor-binaltorphimine (nor-BNI; 17,17'-Bis(cyclopropylmethyl)-6,6',7,7'-tetradehydro-4,5:4', 5'-diepoxy-6,6'-(imino) [7,7'-bimorphinan]-3,3',14,14'-tetrol) were evaluated in vivo in the rat maximal electroshock (MES) seizure model. Following s.c. or i.c.v. pretreatment, nor-BNI selectively antagonized the anticonvulsant effects of the kappa opioid U50, 488, significantly increasing its ED50 by 2.3 and 4.5 fold, respectively. In contrast, pretreatment with nor-BNI (s.c. or i.c.v.) failed to antagonize the anticonvulsant effects of the selective mu opioid, DAMGO. At the doses and injection routes used, nor-BNI itself had no apparent effect on overt behavior or MES-induced convulsions. These data support the earlier suggestion that the anticonvulsant effects of U50,488 are mediated by kappa opioid receptors and confirm 1) the selectivity of nor-BNI as a kappa antagonist and 2) its applicability as a pharmacological tool in the differentiation of multiple opioid receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号