首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
  2021年   1篇
  2019年   1篇
  2015年   6篇
  2014年   6篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.

Background  

Very often genome-wide data analysis requires the interoperation of multiple databases and analytic tools. A large number of genome databases and bioinformatics applications are available through the web, but it is difficult to automate interoperation because: 1) the platforms on which the applications run are heterogeneous, 2) their web interface is not machine-friendly, 3) they use a non-standard format for data input and output, 4) they do not exploit standards to define application interface and message exchange, and 5) existing protocols for remote messaging are often not firewall-friendly. To overcome these issues, web services have emerged as a standard XML-based model for message exchange between heterogeneous applications. Web services engines have been developed to manage the configuration and execution of a web services workflow.  相似文献   
2.
Tissue homeostasis requires balancing cell proliferation and programmed cell death. IGF1 significantly suppressed etoposide-induced apoptosis, measured by caspase 3 activation and quantitation of cellular subG(1) DNA content, in rat parotid salivary acinar cells (C5). Transduction of C5 cells with an adenovirus expressing a constitutively activated mutant of Akt-suppressed etoposide-induced apoptosis, whereas a kinase-inactive mutant of Akt suppressed the protective effect of IGF1. IGF1 also suppressed apoptosis induced by taxol and brefeldin A. EGF was unable to suppress apoptosis induced by etoposide, but was able to synergize with IGF1 to further suppress caspase 3 activation and DNA cleavage after etoposide treatment. The catalytic activity of Akt was significantly higher following stimulation with both growth factors compared to stimulation with IGF1 or EGF alone. These results suggest that a threshold of activated Akt is required for suppression of apoptosis and the cooperative action of growth factors in regulating salivary gland homeostasis.  相似文献   
3.
Peroxisome proliferator-activated receptor-delta (PPARdelta) activation results in upregulation of genes associated with skeletal muscle fatty acid oxidation and mitochondrial uncoupling. However, direct, noninvasive assessment of lipid metabolism and mitochondrial energy coupling in skeletal muscle following PPARdelta stimulation has not been examined. Therefore, in this study we examined the response of a selective PPARdelta agonist (GW610742X at 5 or 100 mg.kg(-1).day(-1) for 8 days) on skeletal-muscle lipid metabolism and mitochondrial coupling efficiency in rats by using in vivo magnetic resonance spectroscopy (MRS). There was a decrease in the intramyocellular lipid-to-total creatine ratio as assessed by in vivo (1)H-MRS in soleus and tibialis anterior muscles by day 7 (reduced by 49 and 46%, respectively; P < 0.01) at the high dose. Following the (1)H-MRS experiment (day 8), [1-(13)C]glucose was administered to conscious rats to assess metabolism in the soleus muscle. The relative fat-vs.-carbohydrate oxidation rate increased in a dose-dependent manner (increased by 52 and 93% in the 5 and 100 mg.kg(-1).day(-1) groups, respectively; P < 0.05). In separate experiments where mitochondrial coupling was assessed in vivo (day 7), (31)P-MRS was used to measure hindlimb ATP synthesis and (13)C-MRS was used to measure the hindlimb tricarboxylic acid cycle flux (V(tca)). There was no alteration, at either dose, in mitochondrial coupling efficiency measured as the ratio of unidirectional ATP synthesis flux to V(tca). Soleus muscle GLUT4 expression was decreased by twofold, whereas pyruvate dehydrogenase kinase 4, carnitine palmitoyl transferase 1a, and uncoupling protein 2 and 3 expression was increased by two- to threefold at the high dose (P < 0.05). In summary, these are the first noninvasive measurements illustrating a selective PPARdelta-mediated decrease in muscle lipid content that was consistent with a shift in metabolic substrate utilization from carbohydrate to lipid. However, the mitochondrial-energy coupling efficiency was not altered in the presence of increased uncoupling protein expression.  相似文献   
4.

Introduction  

The vast difference in the abundance of different proteins in biological samples limits the determination of the complete proteome of a cell type, requiring fractionation of proteins and peptides before MS analysis.  相似文献   
5.
Human fetuses with severe intrauterine growth restriction (IUGR) have less pancreatic endocrine tissue and exhibit beta-cell dysfunction, which may limit beta-cell function in later life and contribute to their increased incidence of noninsulin-dependent diabetes mellitus. Three factors, replication, apoptosis, and neoformation, contribute to fetal beta-cell mass. We studied an ovine model of IUGR to understand whether nutrient deficits lead to decreased rates of fetal pancreatic beta-cell replication, increased rates of apoptosis, or lower rates of differentiation. At 90% of term gestation, IUGR fetal and pancreatic weights were 58% and 59% less than pair-fed control, respectively. We identified a selective impairment of beta-cell mass compared with other pancreatic cell types in IUGR fetuses. Insulin and insulin mRNA contents were less than other pancreatic endocrine hormones in IUGR fetuses, as were pancreatic insulin positive area (42%) and beta-cell mass (76%). Pancreatic beta-cell apoptosis was not different between treatments. beta-cell capacity for cell cycling, determined by proliferating cell nuclear antigen (PCNA) immunostaining, was not different between treatment groups. However, the percentage of beta-cells actually undergoing mitosis was 72% lower in IUGR fetuses. These results indicate that in utero nutrient deficits decrease the population of pancreatic beta-cells by lengthening G1, S, and G2 stages of interphase and decreasing mitosis near term. Diminished beta-cell mass in IUGR infants at birth, if not adequately compensated for after birth, may contribute to insufficient insulin production in later life and, thus, a predisposition to noninsulin-dependent diabetes.  相似文献   
6.
We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 +/- 0.05 ng/ml leucine; 0.99 +/- 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 +/- 0.18 ng/ml) and acute (0.27 +/- 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 +/- 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.  相似文献   
7.
Tumor cells grow in nutrient- and oxygen-deprived microenvironments and adapt to the suboptimal growth conditions by altering their metabolic pathways. This adaptation process commonly results in a tumor phenotype that displays a high rate of aerobic glycolysis and aggressive tumor characteristics. The glucose regulatory molecule, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), is a bifunctional enzyme that is central to glycolytic flux and is downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which has been suggested to modulate glycolysis and possibly activate isoforms of PFKFB, specifically PFKFB3 expressed in tumor cells. Our results demonstrated that long-term low pH exposure induced AMPK activation, which resulted in the up-regulation of PFKFB3 and an increase in its serine residue phosphorylation. Pharmacologic activation of AMPK resulted in an increase in PFKFB3 as well as an increase in glucose consumption, whereas in contrast, inhibition of AMPK resulted in the down-regulation of PFKFB3 and decreased glycolysis. PFKFB3 overexpression in DB-1 tumor cells induced a high rate of glycolysis and inhibited oxygen consumption, confirming its role in controlling glycolytic flux. These results show that low pH is a physiological stress that can promote a glycolytic phenotype commonly associated with tumorigenesis. The implications are that the tumor microenviroment contributes to tumor growth and treatment resistance.  相似文献   
8.
9.

Background

Radiation is a primary or secondary therapeutic modality for treatment of head and neck cancer. A common side effect of irradiation to the neck and neck region is xerostomia caused by salivary gland dysfunction. Approximately 40,000 new cases of xerostomia result from radiation treatment in the United States each year. The ensuing salivary gland hypofunction results in significant morbidity and diminishes the effectiveness of anti-cancer therapies as well as the quality of life for these patients. Previous studies in a rat model have shown no correlation between induction of apoptosis in the salivary gland and either the immediate or chronic decrease in salivary function following γ-radiation treatment.

Methodology/Principal Finding

A significant level of apoptosis can be detected in the salivary glands of FVB mice following γ-radiation treatment of the head and neck and this apoptosis is suppressed in transgenic mice expressing an activated mutant of Akt (myr-Akt1). Importantly, this suppression of apoptosis in myr-Akt1 mice preserves salivary function, as measured by saliva output, three and thirty days after γ-radiation treatment. In order to translate these studies into a preclinal model we found that intravenous injection of IGF1 stimulated activation of endogenous Akt in the salivary glands in vivo. A single injection of IGF1 prior to exposure to γ-radiation diminishes salivary acinar cell apoptosis and completely preserves salivary gland function three and thirty days following irradiation.

Conclusions/Significance

These studies suggest that apoptosis of salivary acinar cells underlies salivary gland hypofunction occurring secondary to radiation of the head and neck region. Targeted delivery of IGF1 to the salivary gland of patients receiving head and neck irradiation may be useful in reducing or eliminating xerostomia and restoring quality of life to these patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号