首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   72篇
  国内免费   2篇
  2022年   16篇
  2021年   34篇
  2020年   14篇
  2019年   11篇
  2018年   22篇
  2017年   17篇
  2016年   24篇
  2015年   41篇
  2014年   54篇
  2013年   53篇
  2012年   70篇
  2011年   77篇
  2010年   38篇
  2009年   29篇
  2008年   35篇
  2007年   33篇
  2006年   38篇
  2005年   38篇
  2004年   26篇
  2003年   33篇
  2002年   27篇
  2001年   12篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1996年   11篇
  1995年   4篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1984年   7篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1975年   6篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1961年   3篇
  1941年   3篇
  1931年   3篇
  1927年   3篇
排序方式: 共有948条查询结果,搜索用时 93 毫秒
1.
A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.  相似文献   
2.
3.
4.
Some models of in vitro chromatin assembly suggest a biphasic molecular mechanism. The first phase, nucleosome formation, is comprised of the formation of histone-DNA complexes which mature into a canonical nucleosome structure. The second phase represents the process by which these nucleosomes become properly spaced with a regular periodicity on the DNA. In this report, we examine the role of DNA topoisomerases in the latter phase of chromatin assembly. To study this process, we use a Xenopus laevis cell-free extract, which assembles quantitative amounts of chromatin on circular DNA templates, and the type II topoisomerase-specific antitumor drugs VM-26 and endrofloxicin. Our results suggest that nucleosome formation is unaffected by the presence of VM-26 or endrofloxicin. However, periodic spacing of nucleosomes is inhibited significantly by these drugs. In the absence of proper chromatin assembly, circular DNA molecules are processed into nucleoprotein complexes which are transcribed poorly. Taken together, these results indicate that the antitumor drugs VM-26 and endrofloxicin influence gene expression indirectly by blocking the periodic spacing of nucleosomes.  相似文献   
5.
6.
The red yeast Rhodotorula mucilaginosa produced an esterase that accumulated in the culture supernatant on induction with triacetin. The enzyme was specific for substrates bearing an O-acetyl group, but was relatively nonspecific for the rest of the molecule, which could consist of a phenol, a monosaccharide, a polysaccharide, or an aliphatic alcohol. The esterase was more active against acetylxylan and glucose beta-d-pentaacetate than were a number of esterases from plant and animal sources, when activities on 4-nitrophenyl acetate were compared. The enzyme exhibited Michaelis-Menten kinetics and was active over a broad pH range (5.5 to 9.2), with an optimum between pH 8 and 10. In addition, the enzyme retained its activity for 2 h at 55 degrees C. The yeast that produced the enzyme did not produce xylanase and, hence, is of interest for the production of acetylxylan esterase that is free of xylanolytic activity.  相似文献   
7.
Summary Streptomycin-resistant colonies were isolated from protoplast cultures of haploid Nicotiana plumbaginifolia based on their ability to green in medium containing 1 mg/ml streptomycin sulfate. The frequency of resistant colonies was 0.9×10–5 in nonmutagenized culture, and increased ten-fold following treatment of culture with 10 g/ml N-methyl-N-nitro-N-nitrosoguanidine. Of a total of 52 resistant clones isolated, 2 gave rise to haploid, 15 to diploid, and 3 to tetraploid plants upon transfer of calli to differentiation medium. Leaf-segment and protoplast assays showed that all diploid regenerates were resistant to streptomycin but sensitive to chloramphenicol, kanamycin, lincomycin, neomycin, and spectinomycin. Plants in most diploid clones were fertile and able to set seeds when self-fertilized and crossed reciprocally to wild-type plants. Inheritance of streptomycin resistance was studied in the diploid clones and, without exception, the resistance was transmitted maternally. Comparative studies of the ultrastructure of organelles and protein synthesis in isolated chloroplasts between wild-type and resistant clones in the presence of streptomycin suggest that streptomycin resistance is controlled by chloroplasts.  相似文献   
8.
9.
Summary The gene encoding human esterase D (EsD), a member of the nonspecific esterase family, is a useful genetic marker for retinoblastoma (RB) and Wilson's disease. Previously we identified a cDNA clone from this gene and determined its chromosomal location. In this report, we present the complete cDNA sequence of the human EsD gene. A long open reading frame encoded a predicted protein of 282 amino acids with molecular weight of 30 kD. A computer-assisted search of a protein sequence data base revealed homology with two other esterases, acetylcholinesterase of Torpedo and esterase-6 of Drosophila. Homologous region were centered around presumptive active sites, suggesting that the catalytic domains of the esterases are conserved during evolution. Three genomic clones of this gene were also isolated and characterized by restriction mapping. At least ten exons were distributed over a 35-kb (kilobase pair) region; each exon contained an average of 100 basepairs (bp). A polymorphic site for Apa I, located within an intron of the esterase D gene, can be used to identify chromosome 13 carrying defective RB alleles within retinoblastoma families.  相似文献   
10.
Mechanism of adhesion of Alysiella bovis to glass surfaces   总被引:1,自引:0,他引:1       下载免费PDF全文
Alysiella bovis adheres to surfaces by means of short, ruthenium red-staining, rod-like fimbriae. The fimbriae remain associated with the cell envelope of A. bovis, even when sonicated or exposed sequentially to toluene, Triton X-100, lysozyme, ribonuclease, and deoxyribonuclease. Adhesion of outer membrane-derived cell wall ghosts of A. bovis to glass was inhibited by IO4-, sodium dodecyl sulfate, urea, pronase, and trypsin. Protease treatment digested the fimbriae from the distal end, and exposure to sodium dodecyl sulfate depolymerized the fimbriae. Exposure of ghosts to 1% sodium dodecyl sulfate preferentially solubilized a 16,500-dalton protein which was subsequently purified by gel filtration and demonstrated to be a glycoprotein (ca. 17% carbohydrate). Antibodies raised against the 16,500-dalton glycoprotein agglutinated whole cells and inhibited adhesion of ghosts to glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号