首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   6篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   4篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1990年   2篇
  1989年   3篇
  1985年   1篇
  1977年   3篇
  1969年   1篇
排序方式: 共有69条查询结果,搜索用时 62 毫秒
1.
1. (14)C from [1-(14)C]glucose injected intraperitoneally into mice is incorporated into glutamate, aspartate and glutamine in the brain to a much greater extent than (14)C from [2-(14)C]glucose. This difference for [1-(14)C]glucose and [2-(14)C]glucose increases with time. The amount of (14)C in C-1 of glutamate increases steadily with time with both precursors. It is suggested that a large part of the glutamate and aspartate pools in brain are in close contact with intermediates of a fast-turning tricarboxylic acid cycle. 2. (14)C from [1-(14)C]acetate and [2-(14)C]acetate is incorporated to a much larger extent into glutamine than into glutamate. An examination of the time-course of (14)C incorporated into glutamine and glutamate reveals that glutamine is not formed from the glutamate pool, labelled extensively by glucose, but from a small glutamate pool. This small glutamate pool is not derived from an intermediate of a fast-turning tricarboxylic acid cycle. 3. It is proposed that two different tricarboxylic acid cycles exist in brain.  相似文献   
2.
Naturally occurring tyrosine radicals from the M2 subunit of ribonucleotide reductase (RR) have been recorded by ESR in proliferating ordinary Ehrlich-ascites (EA) tumor cells of mice. Tyrosine radicals are stable in EA cells at room temperature for 2 h. Up to 500 mW no microwave saturation occurs. The relatively high stability and non-saturation of tyrosine radicals in EA cells suggests a suitable protein conformation in the M2 subunit enabling a close contact between the tyrosine radical and the antiferromagnetic iron complex. This facilitates an ESR study of functionally essential tyrosine radicals of RR in EA cells at low temperature and recommends this cellular system for studying such processes as inhibition and activation, which change the content of tyrosine radicals of the proliferation-linked RR. Oxygen treatment of non-proliferating (quiescent) EA cells reactivates tyrosine radicals 2-3 fold as found in strongly proliferating cells. We conclude that in quiescent cells, suffering from a lack of oxygen due to their high density in the peritoneal cavity, a reactivation of tyrosine radicals occurs by oxidation of non-radical tyrosine residues of inactive M2 subunits.  相似文献   
3.
4.
5.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   
6.
7.
8.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
9.
We measured the δ98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N2. This organism uses a Mo‐based nitrate reductase during nitrate utilization and a Mo‐based dinitrogenase during N2 fixation under culture conditions here. We also demonstrate that it has a high‐affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N2‐fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of ?0.2‰ to ?1.0‰ ± 0.2‰ between cells and media (εcells–media), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of ?0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N2, A. variabilis produced fractionations of ?0.9 ± 0.1‰ during exponential growth, and ?0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter‐bound Mo in marine sediments.  相似文献   
10.
Insects have an enormous impact on global public health as disease vectors and as agricultural enablers as well as pests and olfaction is an important sensory input to their behavior. As such it is of great value to understand the interplay of the molecular components of the olfactory system which, in addition to fostering a better understanding of insect neurobiology, may ultimately aid in devising novel intervention strategies to reduce disease transmission or crop damage. Since the first discovery of odorant receptors in vertebrates over a decade ago, much of our view on how the insect olfactory system might work has been derived from observations made in vertebrates and other invertebrates, such as lobsters or nematodes. Together with the advantages of a wide range of genetic tools, the identification of the first insect odorant receptors in Drosophila melanogaster in 1999 paved the way for rapid progress in unraveling the question of how olfactory signal transduction and processing occurs in the fruitfly. This review intends to summarize much of this progress and to point out some areas where advances can be expected in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号