首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   6篇
  国内免费   19篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   11篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有138条查询结果,搜索用时 500 毫秒
1.
Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.  相似文献   
2.
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.  相似文献   
3.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   
4.
5.
章菲  王义兵  吴利东 《病毒学报》2021,37(2):422-427
2019年12月出现于湖北武汉的一种新型冠状病毒(SARS-CoV-2)感染所致肺炎疫情,给人类生命安全造成威胁。迄今为止,对2019年出现的SARS-CoV-2的研究仍处于起步阶段,本文就其相关研究进展进行综述,重点阐述了目前关于SARS-CoV-2的病原学与致病机制方面的研究成果,同时对其流行病学以及该病毒引发的肺炎临床特点加以总结,有助于读者及时了解SARS-CoV-2最新的研究动态,并为今后开展治疗药物及疫苗研发提供方向。  相似文献   
6.
Plant growth-promoting rhizobacteria (PGPRs) confer benefits to crops by producing volatile organic compounds (VOCs) to trigger induced systemic tolerance (IST). Here we show that Bacillus velezensis GJ11, a kind of PGPRs, produce VOCs such as 2,3-butanediol and acetoin to trigger IST and cause stomatal closure against O3 injury in tobacco plants. Compared to 2,3-butanediol, acetoin was more effective on triggering IST against O3 injury. The bdh-knockout strain GJ11Δbdh with a blocked metabolic pathway from acetoin to 2,3-butanediol produced more acetoin triggering stronger IST against O3 injury than GJ11. Both acetoin and GJ11Δbdh effectively enhance the antioxidant enzymes activity (e.g. superoxide dismutase and catalases) that is favorable for scavenging the reactive oxygen species like H2O2 in leaves after exposure to O3. Consequently, less H2O2 accumulation was observed, and reasonably less chlorophylls and proteins were damaged by H2O2 in the tobacco leaves treated with acetoin or GJ11Δbdh. The field experiment also showed that both acetoin and GJ11Δbdh could protect tobacco plants from O3 injury after application by root-drench. This study provides new insights into the role of rhizobacterial B. velezensis and its volatile component of acetoin in triggering defense responses against stresses such as O3 in plants.  相似文献   
7.
The purpose of this study was to evaluate the probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Four Enterococcus isolates showed high cholesterol removal ability in media were identified as Enterococcus durans (KLDS 6.0930 and 6.0933) and Enterococcus faecalis (KLDS 6.0934 and 6.0935) by 16S rRNA and pheS gene sequences, respectively, and selected for further evaluation. In order to assess the probiotic potential and safety of these strains, the property of four Enterococcus strains were examined, including acid and bile tolerance, adherence to Caco‐2 cells and antibiotics susceptibility. All four strains showed potential cholesterol assimilation, de‐conjugation of bile salts and/or cholesterol degradation to remove cholesterol in vitro. In addition, the potential effect of E. durans KLDS 6.0930 on serum cholesterol levels was evaluated in Sprague‐Dawley rats. After 4 weeks administration, compared with rats fed a high‐cholesterol diet without lactic acid bacteria supplementation, there was a significant (P < 0.05) decrease in the total cholesterol and low‐density lipoprotein cholesterol levels in the serum of rats treated with KLDS 6.0930. Furthermore, total bile acid level in the feces was significantly (P < 0.05) increased after KLDS 6.0930 administration. These observations suggested that the strain E. durans KLDS 6.0930 may be used in the future as a good candidate for lowering human serum cholesterol levels.  相似文献   
8.
Oxidative damage and inflammation are closely associated with the pathogenesis of acute lung injury (ALI). Thus, we explored the protective effect of isovitexin (IV), a glycosylflavonoid, in the context of ALI. To accomplish this, we created in vitro and in vivo models by respectively exposing macrophages to lipopolysaccharide (LPS) and using LPS to induce ALI in mice. In vitro, our results showed that IV treatment reduced LPS-induced pro-inflammatory cytokine secretion, iNOS and COX-2 expression and decreased the generation of ROS. Consistent findings were obtained in vivo. Additionally, IV inhibited H2O2-induced cytotoxicity and apoptosis. However, these effects were partially reversed following the use of an HO-1 inhibitor in vitro. Further studies revealed that IV significantly inhibited MAPK phosphorylation, reduced NF-κB nuclear translocation, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in RAW 264.7 cells. In vivo, pretreatment with IV attenuated histopathological changes, infiltration of polymorphonuclear granulocytes and endothelial activation, decreased the expression of ICAM-1 and VCAM-1, reduced the levels of MPO and MDA, and increased the content of GSH and SOD in ALI. Furthermore, IV treatment effectively increased Nrf2 and HO-1 expression in lung tissues. Therefore, IV may offer a protective role against LPS-induced ALI by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways.  相似文献   
9.
This work demonstrates the use of low-energy ultrasound (US) to enhance secondary metabolite production in plant cell cultures. Suspension culture of Lithospermum erythrorhizon cells was exposed to low-power US (power density < or = 113.9 mW/cm(3)) for short periods (1-8 min). The US exposure significantly stimulated the shikonin biosynthesis of the cells, and at certain US doses, increased the volumetric shikonin yield by about 60%-70%. Meanwhile, the shikonin excreted from the cells was increased from 20% to 65%-70%, due partially to an increase in the cell membrane permeability by sonication. With combined use of US treatment and in situ product extraction by an organic solvent, or the two-phase culture, the volumetric shikonin yield was increased more than two- to threefold. Increasing in the number of US exposures during the culture process usually resulted in negative effects on shikonin yield but slight stimulation of shikonin excretion. US at relatively high energy levels caused slight cell growth depression (maximum 9% decrease in dry cell weight). Two key enzymes for the secondary metabolite biosynthesis of cells, phenylalanine ammonia lyase and p-hydroxybenzoic acid geranyltransferase, were found to be stimulated by the US. The US stimulation of secondary metabolite biosynthesis was attributed to the metabolic activity of cells activated by US, and more specifically, the defense responses of plant cells to the mechanical stress of US irradiation.  相似文献   
10.
土沉香愈伤组织培养及植株再生(简报)   总被引:12,自引:1,他引:11  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号