首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  国内免费   4篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   4篇
  2014年   11篇
  2013年   8篇
  2012年   3篇
  2011年   11篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
用高效薄层扫描法测定了绞股蓝中人参皂甙Rb_1的含量,并进行分离、纯化,再用酸解法水解,测得其结合糖为葡萄糖。  相似文献   
2.
Calluses were induced from immature embryos of an indica type rice and finely dispersed cell suspension cultures were initiated from the callus using modified AA medium (S1 medium). The suspension cultures were maintained alternatively (1–2 passages in each medium) in S1 medium and S2 medium, the latter containing KNO3, NH4NO3, proline and glutamine as nitrogen source. Protoplasts of high quality were isolated form suspension cells cultured in S2 medium supplemented with ABA. Embedding the protoplasts in agarose blocks containing NH4NO3-free modified KM8P(PM1) medium and immersing the blocks in NH4NO3-containing modified KM8P(PM3) medium were most effective for obtaining protoplast division and callus formation. The protoplast-derived calluses were precultured in potato extract-aand/or ABA-containing N6(D1, D2 or D3) media and many embryo-like structures were formed. These structures developed into plantlets after being transferred to N6 differentiation (D4) medium. The regenerated plantlets grew into mature plants and beard seeds normally.Abbreviations AA medium amino acids based medium - ABA abscisic acid - BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - DF division frequency - IAA indoleacetic acid - KIN kinetin - NAA naphthaleneacetic acid - PE planting efficiency  相似文献   
3.
Growing evidence from epidemiological studies indicates the association between rheumatoid arthritis (RA) and measles. However, the exact mechanism for this association is still unclear now. We consider that the strong association between both diseases may be caused by shared genetic pathways. We performed a pathway analysis of large-scale RA genome-wide association studies (GWAS) dataset with 5,539 cases and 20,169 controls of European descent. Meanwhile, we evaluated our findings using previously identified RA loci, protein-protein interaction network and previous results from pathway analysis of RA and other autoimmune diseases GWAS. We confirmed four pathways including Cytokine-cytokine receptor interaction, Jak-STAT signaling, T cell receptor signaling and Cell adhesion molecules. Meanwhile, we highlighted for the first time the involvement of Measles and Intestinal immune network for IgA production pathways in RA. Our results may explain the strong association between RA and measles, which may be caused by the shared genetic pathway. We believe that our results will be helpful for future genetic studies in RA pathogenesis and may significantly assist in the development of therapeutic strategies.  相似文献   
4.
5.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   
6.
7.
Curacin A is a mixed polyketide/nonribosomal peptide possessing anti-mitotic and anti-proliferative activity. In the biosynthesis of curacin A, the N-terminal domain of the CurF multifunctional protein catalyzes decarboxylation of 3-methylglutaconyl-acyl carrier protein (ACP) to 3-methylcrotonyl-ACP, the postulated precursor of the cyclopropane ring of curacin A. This decarboxylase is encoded within an "HCS cassette" that is used by several other polyketide biosynthetic systems to generate chemical diversity by introduction of a beta-branch functional group to the natural product. The crystal structure of the CurF N-terminal ECH(2) domain establishes that the protein is a crotonase superfamily member. Ala(78) and Gly(118) form an oxyanion hole in the active site that includes only three polar side chains as potential catalytic residues. Site-directed mutagenesis and a biochemical assay established critical functions for His(240) and Lys(86), whereas Tyr(82) was nonessential. A decarboxylation mechanism is proposed in which His(240) serves to stabilize the substrate carboxylate and Lys(86) donates a proton to C-4 of the acyl-ACP enolate intermediate to form the Delta(2) unsaturated isopentenoyl-ACP product. The CurF ECH(2) domain showed a 20-fold selectivity for ACP-over CoA-linked substrates. Specificity for ACP-linked substrates has not been reported for any other crotonase superfamily decarboxylase. Tyr(73) may select against CoA-linked substrates by blocking a contact of Arg(38) with the CoA adenosine 5'-phosphate.  相似文献   
8.
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (⊿MrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ⊿MrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.  相似文献   
9.
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号