首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   42篇
  2024年   1篇
  2023年   12篇
  2022年   17篇
  2021年   41篇
  2020年   18篇
  2019年   21篇
  2018年   23篇
  2017年   10篇
  2016年   30篇
  2015年   44篇
  2014年   37篇
  2013年   48篇
  2012年   76篇
  2011年   48篇
  2010年   27篇
  2009年   35篇
  2008年   39篇
  2007年   25篇
  2006年   35篇
  2005年   24篇
  2004年   17篇
  2003年   25篇
  2002年   17篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1974年   2篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1945年   1篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
1.
The feasibility of using hypo- or hypertonic stress to selectively destroy lymphocytes while sparing stem cells was investigated. Lymphocytes were isolated from peripheral blood and exposed to Hanks' balanced salt solutions ranging in concentration from 66 to 2700 mOsm. The Boylevan't Hoff plot of cell volume versus reciprocal osmolality was linear. Following osmotic stress, viabilities of the lymphocytes and the granulocyte-monocyte progenitor cells (CFUc) were determined. Lymphocyte viability was assessed by tritiated thymidine incorporation following mitogen stimulation. CFUc viability was measured with the soft agar colony assay. Both types of cells were found to possess high osmotic tolerances compared to other blood cells. While progenitor cells in general appeared to survive anisotonic exposure somewhat better than lymphocytes, significant statistical differences were not established for most situations. The highest degree of CFUc enrichment was twofold, but there was a concomitant 50% drop in CFUc survival. These results suggest that osmotic stress is not a useful procedure for the separation of peripheral blood lymphocytes and stem cells.  相似文献   
2.
Wildlife trade is a key driver of extinction risk, affecting at least 24% of terrestrial vertebrates. The persistent removal of species can have profound impacts on species extinction risk and selection within populations. We draw together the first review of characteristics known to drive species use – identifying species with larger body sizes, greater abundance, increased rarity or certain morphological traits valued by consumers as being particularly prevalent in trade. We then review the ecological implications of this trade-driven selection, revealing direct effects of trade on natural selection and populations for traded species, which includes selection against desirable traits. Additionally, there exists a positive feedback loop between rarity and trade and depleted populations tend to have easy human access points, which can result in species being harvested to extinction and has the potential to alter source–sink dynamics. Wider cascading ecosystem repercussions from trade-induced declines include altered seed dispersal networks, trophic cascades, long-term compositional changes in plant communities, altered forest carbon stocks, and the introduction of harmful invasive species. Because it occurs across multiple scales with diverse drivers, wildlife trade requires multi-faceted conservation actions to maintain biodiversity and ecological function, including regulatory and enforcement approaches, bottom-up and community-based interventions, captive breeding or wildlife farming, and conservation translocations and trophic rewilding. We highlight three emergent research themes at the intersection of trade and community ecology: (1) functional impacts of trade; (2) altered provisioning of ecosystem services; and (3) prevalence of trade-dispersed diseases. Outside of the primary objective that exploitation is sustainable for traded species, we must urgently incorporate consideration of the broader consequences for other species and ecosystem processes when quantifying sustainability.  相似文献   
3.
4.
JIM 5, an antibody that recognizes a relatively unesterifiedpectic epitope, distinguishes between dividing (meristematic)and non-dividing (central cells of the quiescent centre) cellsin the Arabidopsis root tip, indicating that non-dividing cellwalls contain higher levels of relatively unesterified pectinthan dividing cells. JIM 7, an antibody that recognizes a relativelymethyl esterified epitope, labels all cell walls uniformly throughoutthe root, suggesting that there is little variation in the relativelymethyl esterified pectic component in the two cell types. Theseobservations suggest that the characteristics of cell wallsin the root tip result in part from modulations in the amountof unesterified and non-methyl esterified pectin. Key words: Pectin, quiescent centre, roots, Arabidopsis  相似文献   
5.
Evidence is provided that ethylene is a positive regulator of hair cell development in the root epidermis of Arabidopsis thaliana. Treatment of seedlings with increasing concentrations of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) results in progressively more root hair cells developing in positions normally occupied by non-hair cells. Consistent with these findings are observations that treatments that block either ethylene synthesis or its perception reduce the number of root hairs. A model is proposed in which either ethylene or ACC is a signal involved in specifying the pattern of cell differentiation in the Arabidopsis root epidermis.  相似文献   
6.
Rapid, onestep polychromatic staining of 0.75-1.5 μm epoxy sections of glutaraldehyde-osmium fixed tissues can be obtained with mixtures of basic fucbsin and toluidme blue O in alkaline polyethylene glycol ZOO (PEG ZOO). Sections are attached to slides by heating at 100 C for 45 seconds and stained at that temperature for 2-3 minutes with a solution consisting of PEG 200 (50 ml), 0.2 N KOH (0.75 ml), basic fuchsin (1.7 gm), and toluidine blue O (0.3 gm). Red-blue balance and selective staining of different structures can be controlled by varying the amount of toluidine blue added. After rinsing with 10% acetone and rapid drying, sections are covered with immersion oil or mounting medium and a cover-slip. Total time from cutting of a section to finished preparation is less than 6 minutes. This staining solution is stable, does not produce precipitates on the sections, and does not wrinkle or lift the sections from the slides.  相似文献   
7.
RNA viruses are a leading cause of human infectious diseases and the prediction of where new RNA viruses are likely to be discovered is a significant public health concern. Here, we geocoded the first peer-reviewed reports of 223 human RNA viruses. Using a boosted regression tree model, we matched these virus data with 33 explanatory factors related to natural virus distribution and research effort to predict the probability of virus discovery across the globe in 2010–2019. Stratified analyses by virus transmissibility and transmission mode were also performed. The historical discovery of human RNA viruses has been concentrated in eastern North America, Europe, central Africa, eastern Australia, and north-eastern South America. The virus discovery can be predicted by a combination of socio-economic, land use, climate, and biodiversity variables. Remarkably, vector-borne viruses and strictly zoonotic viruses are more associated with climate and biodiversity whereas non-vector-borne viruses and human transmissible viruses are more associated with GDP and urbanization. The areas with the highest predicted probability for 2010–2019 include three new regions including East and Southeast Asia, India, and Central America, which likely reflect both increasing surveillance and diversity of their virome. Our findings can inform priority regions for investment in surveillance systems for new human RNA viruses.  相似文献   
8.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
9.
Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host–pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host–pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses—such as phylogenetic range, research effort, and being vector‐borne—are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host‐switching in pathogens.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号