首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1878篇
  免费   130篇
  国内免费   7篇
  2015篇
  2024年   9篇
  2023年   13篇
  2022年   19篇
  2021年   32篇
  2020年   22篇
  2019年   40篇
  2018年   30篇
  2017年   28篇
  2016年   57篇
  2015年   97篇
  2014年   112篇
  2013年   130篇
  2012年   124篇
  2011年   112篇
  2010年   89篇
  2009年   76篇
  2008年   89篇
  2007年   90篇
  2006年   66篇
  2005年   61篇
  2004年   55篇
  2003年   50篇
  2002年   46篇
  2001年   54篇
  2000年   46篇
  1999年   28篇
  1998年   20篇
  1997年   24篇
  1996年   18篇
  1995年   23篇
  1994年   8篇
  1993年   15篇
  1992年   27篇
  1991年   27篇
  1990年   16篇
  1989年   21篇
  1988年   21篇
  1987年   15篇
  1985年   14篇
  1984年   13篇
  1983年   18篇
  1982年   12篇
  1981年   23篇
  1980年   11篇
  1979年   14篇
  1978年   8篇
  1977年   15篇
  1976年   13篇
  1974年   13篇
  1973年   8篇
排序方式: 共有2015条查询结果,搜索用时 15 毫秒
1.
2.
3.
Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn2+ ion as the active-site centre whereas others are only active with Fe2+ (or Co2+, Ni2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.  相似文献   
4.
5.
Human ether-a-go-go-related gene (hERG) potassium channels are critical determinants of cardiac repolarization. Loss of function of hERG channels is associated with Long QT Syndrome, arrhythmia, and sudden death. Acidosis occurring as a result of myocardial ischemia inhibits hERG channel function and may cause a predisposition to arrhythmias. Acidic pH inhibits hERG channel maximal conductance and accelerates deactivation, likely by different mechanisms. The mechanism underlying the loss of conductance has not been demonstrated and is the focus of the present study. The data presented demonstrate that, unlike in other voltage-gated potassium (Kv) channels, substitution of individual histidine residues did not abolish the pH dependence of hERG channel conductance. Abolition of inactivation, by the mutation S620T, also did not affect the proton sensitivity of channel conductance. Instead, voltage-dependent channel inhibition (δ = 0.18) indicative of pore block was observed. Consistent with a fast block of the pore, hERG S620T single channel data showed an apparent reduction of the single channel current amplitude at low pH. Furthermore, the effect of protons was relieved by elevating external K(+) or Na(+) and could be modified by charge introduction within the outer pore. Taken together, these data strongly suggest that extracellular protons inhibit hERG maximal conductance by blocking the external channel pore.  相似文献   
6.
    
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A2 (cPLA2) activation and energy failure/oxidative stress‐induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C‐α (PKC‐α), Src, Raf, and extracellular signal‐regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time‐ and concentration‐dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC‐α membrane translocation, Src, Raf, ERK, and cPLA2 phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate‐induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate‐treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC‐α, Src/Raf/ERK signaling and cPLA2 are active participants in diethylmaleate/iodoacetate‐induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.

  相似文献   

7.
    
Multiple loss‐of‐function mutations in TRIAD3 (a.k.a. RNF216) have recently been identified in patients suffering from Gordon Holmes syndrome (GHS), characterized by cognitive decline, dementia, and movement disorders. TRIAD3A is an E3 ubiquitin ligase that recognizes and facilitates the ubiquitination of its target for degradation by the ubiquitin‐proteasome system (UPS). Here, we demonstrate that two of these missense substitutions in TRIAD3 (R660C and R694C) could not regulate the degradation of their neuronal target, activity‐regulated cytoskeletal‐associated protein (Arc/Arg 3.1), whose expression is critical for synaptic plasticity and memory. The synaptic deficits due to the loss of endogenous TRIAD3A could not be rescued by TRIAD3A harboring GHS‐associated missense mutations. Moreover, we demonstrate that the loss of endogenous TRIAD3A in the mouse hippocampal CA1 region led to deficits in spatial learning and memory. Finally, we show that these missense mutations abolished the interaction of TRIAD3A with Arc, disrupting Arc ubiquitination, and consequently Arc degradation. Our current findings of Arc misregulation by TRIAD3A variants suggest that loss‐of‐function mutations in TRIAD3A may contribute to dementia observed in patients with GHS driven by dysfunctional UPS components, leading to cognitive impairments through the synaptic protein Arc.  相似文献   
8.
    
This study identifies the main changes in protein expression in human breast tumors compared to normal breast tissue. Malignant tumors (32) and normal breast tissue samples (23), from formaldehyde‐fixed, paraffin‐embedded specimens are subjected to discovery proteomics using liquid chromatography/tandem mass spectrometry, with spectral counts for quantitation. The dataset contains 1406 proteins. Differential expression is measured using a method that takes advantage of estimates of the percentage of tumor on a slide. This analysis shows that the major classes of proteins over‐expressed by tumors are RNA‐binding, heat shock and DNA repair proteins. RNA‐binding proteins, including heterogeneous nuclear ribonucleoproteins (HNRNPs), SR splice factors (SRSF) and elongation factors form the largest group. Comparison with results from another study demonstrates that the RNA‐binding proteins are associated specifically with malignant transformation, rather than with cell proliferation. HNRNP and SRSF proteins help define splice sites in normal cells. Their over‐expression may dysregulate splicing, which in turn has the potential to promote malignant transformation.  相似文献   
9.
    
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
10.
Livestock wastewater that is discharged into rivers and ponds results in eutrophication, which would then cause an increase in microorganisms, microalgae, and macrophytes. The derivatives of which critically damage aquatic life and agricultural irrigation. This study designed a swine farm wastewater bioremediation system, by using tubular chained cyanobacteria-immobilized agar–alginate blocks and cyanobacteria biological absorption to reduce wastewater pollution. Swine farm wastewater was filtered through a long tube stuffed with cyanobacteria (Dermocarpella sp.)-immobilized agar–alginate blocks. The removal efficiencies of biological oxygen demand, chemical oxygen demand, phosphorous, ammonia, and suspension solids were evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号