首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  2021年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   10篇
  2011年   4篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有53条查询结果,搜索用时 593 毫秒
1.
The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R), the primary Ca2+-release channel in the endoplasmic reticulum (ER). Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4) has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine “hinges” replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG). By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.  相似文献   
2.
This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca(2+) waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca(2+)](i) associated with Ca(2+) waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca(2+)-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca(2+) waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca(2+)](i) changes were characterized by initiating Ca(2+) puffs associated with the perinuclear ER. By contrast, in Cx-GFP-transfected cells and in the presence of apyrase, [Ca(2+)](i) changes were propagated without initiating perinuclear Ca(2+) puffs and were communicated between cells at the sites of the Cx-GFP gap junctions. The efficiency of Cx expression determined the extent of Ca(2+) wave propagation. These results demonstrate that intercellular Ca(2+) waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other.  相似文献   
3.
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.  相似文献   
4.
Cellular communication mediated by gap junction channels and hemichannels, both composed of connexin proteins, constitutes two acknowledged regulatory platforms in the accomplishment of tissue homeostasis. In recent years, an abundance of reports has been published indicating functions for connexin proteins in the control of the cellular life cycle that occur independently of their channel activities. This has yet been most exemplified in the context of cell growth and cell death, and is therefore as such addressed in the current paper. Specific attention is hereby paid to the molecular mechanisms that underpin the cellular non-channel roles of connexin proteins, namely the alteration of the expression of tissue homeostasis determinants and the physical interaction with cell growth and cell death regulators. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   
5.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   
6.
Gap junctions are key components underpinning multicellularity. They provide cell to cell channel pathways that enable direct intercellular communication and cellular coordination in tissues and organs. The channels are constructed of a family of connexin (Cx) membrane proteins. They oligomerize inside the cell, generating hemichannels (connexons) composed of six subunits arranged around a central channel. After transfer to the plasma membrane, arrays of Cx hemichannels (CxHcs) interact and couple with partners in neighboring attached cells to generate gap junctions. Cx channels have been studied using a range of technical approaches. Short peptides corresponding to sequences in the extra- and intracellular regions of Cxs were used first to generate epitope-specific antibodies that helped studies on the organization and functions of gap junctions. Subsequently, the peptides themselves, especially Gap26 and -27, mimetic peptides derived from each of the two extracellular loops of connexin43 (Cx43), a widely distributed Cx, have been extensively applied to block Cx channels and probe the biology of cell communication. The development of a further series of short peptides mimicking sequences in the intracellular loop, especially the extremity of the intracellular carboxyl tail of Cx43, followed. The primary inhibitory action of the peptidomimetics occurs at CxHcs located at unapposed regions of the cell’s plasma membrane, followed by inhibition of cell coupling occurring across gap junctions. CxHcs respond to a range of environmental conditions by increasing their open probability. Peptidomimetics provide a way to block the actions of CxHcs with some selectivity. Furthermore, they are increasingly applied to address the pathological consequences of a range of environmental stresses that are thought to influence Cx channel operation. Cx peptidomimetics show promise as candidates in developing new therapeutic approaches for containing and reversing damage inflicted on CxHcs, especially in hypoxia and ischemia in the heart and in brain functions.  相似文献   
7.
8.
The molecular mechanisms underlying the regulation of gap junction (GJ) channels based on the 43-kDa connexin isoform (Cx43) have been studied extensively. GJ channels are formed by the docking of opposed hemichannels in adjacent cells. Mounting data indicate that unopposed Cx43 hemichannels are also functional in the plasma membrane. However, our understanding of how Cx43-hemichannel opening and closing is regulated at the molecular level is only poorly understood. Recent work elucidated that actomyosin contractility inhibits potently Cx43 hemichannels. It is known that intracellular Ca(2+) exerts a bell-shaped-dependent effect on Cx43-hemichannel opening. While low-intracellular [Ca(2+) ] (<500 nM) provokes opening of the channel, high-intracellular [Ca(2+) ] (> 500 nM) favours closing of the channel. The mechanism underlying this negative regulation of Cx43-hemichannel activity by high-intracellular [Ca(2+) ] seems to be dependent on the activation of the actomyosin contractile system. The activity of Cx43 hemichannels is critically controlled by molecular interactions between the intracellular loop and the C-terminal tail. These interactions are essential for Cx43-hemichannel opening in response to triggers such as cytosolic [Ca(2+) ] rise or external [Ca(2+) ] lowering. In this review, we present the hypothesis that the actomyosin contractile system can function as an important brake mechanism on Cx43-hemichannel opening. By controlling loop-tail interactions, the contractile system would prevent aberrant or excessive opening of Cx43 hemichannels.  相似文献   
9.
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.  相似文献   
10.
The relationship between apoptosis and resting intracellular free calcium ([Ca2+]i) was studied in serum-free cultures of granulosa cell sheets isolated from preovulatory quail follicles. Apoptosis was detected by acridine orange, in situ end-labeling of fragmented DNA and electron microscopy. [Ca2+]i was measured using fura-2. [Ca2+]i averaged 525 mM in freshly isolated sheets. In 24 h cultures no apoptosis was detected but [Ca2+]i became very dispersed, 20% of the sheets showing values above 1000 nM. At 48 h, apoptosis was obvious and [Ca2+]i remained dispersed. At 72 h, apoptosis and also the fraction of sheets with high [Ca2+]i were at their maximum. At 96 h apoptosis was subsiding and [Ca2+]i normalized. FSH depressed apoptosis and [Ca2+]i in the 72 h cultures. We conclude that at 24 h apoptosis is initiated at high [Ca2+]i foci. At later stages apoptosis is associated with high [Ca2+]i, but it is not clear whether this is cause or consequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号