首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   5篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   11篇
  2006年   7篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   9篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
It has been shown that in the absence of KCl, the actin-stimulated Mg2+-ATPase activity of rabbit skeletal myosin minifilaments with phosphorylated regulatory lights chains (LC2) exceeds 3-4-fold that of myosin minifilaments with dephosphorylated LC2. Addition of KCl leads to a decrease in the difference between the two ATPase activities. LC2 phosphorylation considerably increases the rate of ATPase reaction and only slightly decreases the affinity of myosin minifilaments for F-actin. It is suggested that the unusual effect of LC2 phosphorylation on the kinetic parameters of the actin-stimulated ATPase reaction of myosin minifilaments can be accounted for by its influence on the interaction between myosin heads which results in the ordered self-assembly of minifilaments.  相似文献   
2.
Changes in the charge of sarcoplasmic reticulum (SR) vesicles are studied using lipophilic ions, which are adsorbed by the membrane phase. Upon addition of MgATP, phenyldicarbaundecaborane (PCB-) and tetraphenylboron (TPB-) are taken up by the SR vesicles, while tetraphenylphosphonium (TPP+) is released into the water phase. The PCB- uptake occurs as well under conditions when SR membrane is shunted by high Cl- concentration. MgATP induces minor additional binding of PCB- in the presence of oxalate and it is followed by release of the lipophilic anion from the vesicles. EGTA partly reverses the ATP effect, and calcium ionophore A23187 plus EGTA reverses it completely. Vesicles that were preliminarily loaded by Ca2+ demonstrated higher passive and lower ATP-dependent PCB- binding. Activation of isolated Ca2+-ATPase in the presence of 0.1 mM EGTA results in PCB- release into the medium and additional TPP+ binding to the enzyme. We suggest that the redistribution of the lipophilic ions between the water phase and SR membrane reflects charge changes in Ca2+-binding sites inside both SR vesicles and Ca2+-ATPase molecules in the course of Ca2+ translocation.  相似文献   
3.
The analysis of the 23Na-NMR signal shape variations in the presence of vesicles of light sarcoplasmic reticulum (SR) shows the existence of sodium sites on the membranes with Kd values of about 10 mM. Other monovalent cations displace Na+ from SR fragments in a competitive manner according to the row K+ greater than Rb+ greater than Cs+ greater than Li+. Calcium ions also reduce Na+ binding, the Na+ desorption curve being of a two-stage nature, which, as suggested, indicates the existence of two types of Ca(2+)-sensitive Na+ binding sites (I and II). Sites of type I and II are modified by Ca2+ in submicromolar and millimolar concentrations, respectively. Analysis of sodium (calcium) desorption produced by calcium (sodium) allowed us to postulate the competition of these two cations for sites I and identity of these sites to high-affinity Ca(2+)-binding ones on the Ca(2+)-ATPase. Sites I weakly interact with Mg2+ (KappMg approximately 30 mM). Reciprocal effects of sodium and calcium on binding of each other to sites II cannot be described by a simple competition model, which indicates nonhomogeneity of these sites. A portion of sites I (approximately 70%) interacts with Mg2+ (KappMg = 3-4 mM). The pKa value of sites II is nearly 6.0. The number of sites II is three times greater than that of sites I. In addition, sites with intermediate affinity for Ca2+ were found with Kd values of 2-5 microM. These sites were revealed due to the reducing of the sites II affinity for Na+ upon Ca2+ binding to SR membranes. It can thus be concluded that in nonenergized SR there are binding sites for monovalent cations of at least three types: (1) sites I (which also bind Ca2+ at low concentrations), (2) magnesium-sensitive sites II and (3) magnesium-insensitive sites II.  相似文献   
4.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 mumol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in "calcium-oxalate preparation" from hearts are proteins with molecular weights of about 100000 (Ca2+-dependent ATPase) and 55000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12-16 mumol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   
5.
Although malaria and Epstein-Barr (EBV) infection are recognized cofactors in the genesis of endemic Burkitt lymphoma (BL), their relative contribution is not understood. BL, the most common paediatric cancer in equatorial Africa, is a high-grade B cell lymphoma characterized by c-myc translocation. EBV is a ubiquitous B lymphotropic virus that persists in a latent state after primary infection, and in Africa, most children have sero-converted by 3 y of age. Malaria infection profoundly affects the B cell compartment, inducing polyclonal activation and hyper-gammaglobulinemia. We recently identified the cystein-rich inter-domain region 1alpha (CIDR1alpha) of the Plasmodium falciparum membrane protein 1 as a polyclonal B cell activator that preferentially activates the memory compartment, where EBV is known to persist. Here, we have addressed the mechanisms of interaction between CIDR1alpha and EBV in the context of B cells. We show that CIDR1alpha binds to the EBV-positive B cell line Akata and increases the number of cells switching to the viral lytic cycle as measured by green fluorescent protein (GFP) expression driven by a lytic promoter. The virus production in CIDR1alpha-exposed cultures was directly proportional to the number of GFP-positive Akata cells (lytic EBV) and to the increased expression of the EBV lytic promoter BZLF1. Furthermore, CIDR1alpha stimulated the production of EBV in peripheral blood mononuclear cells derived from healthy donors and children with BL. Our results suggest that P. falciparum antigens such as CIDR1alpha can directly induce EBV reactivation during malaria infection that may increase the risk of BL development for children living in malaria-endemic areas. To our knowledge, this is the first report to show that a microbial protein can drive a latently infected B cell into EBV replication.  相似文献   
6.
Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein that plays a key role in the Ca2+-regulated contraction of striated muscles. Two Tpm isoforms, α (Tpm 1.1) and β (Tpm 2.2), are expressed in fast skeletal muscles. These Tpm isoforms can form either αα and ββ homodimers, or αβ heterodimers. However, only αα-Tpm and αβ-Tpm dimers are usually present in most of fast skeletal muscles, because ββ-homodimers are relatively unstable and cannot exist under physiologic conditions. Nevertheless, the most of previous studies of myopathy-causing mutations in the Tpm β-chains were performed on the ββ-homodimers. In the present work, we applied different methods to investigate the effects of two myopathic mutations in the β-chain, Q147P and K49del (i.e. deletion of Lys49), on structural and functional properties of Tpm αβ-heterodimers and to compare them with the properties of ββ-homodimers carrying these mutations in both β-chains. The results show that the properties of αβ-Tpm heterodimers with these mutations in the β-chain differ significantly from the properties of ββ-homodimers with the same substitutions in both β-chains. This indicates that the αβ-heterodimer is a more appropriate model for studying the effects of myopathic mutations in the β-chain of Tpm than the ββ-homodimer which virtually does not exist in human skeletal muscles.  相似文献   
7.
Activation-induced cell death (AICD) of mature T cells plays an important role in the control of immune homeostasis and peripheral tolerance. TNFRs and Fas have been implicated in the induction of AICD. However, these molecules were shown to be dispensable, at least in some experimental systems, for downsizing of Ag-induced T cell expansions and development of tolerance in vivo. The conditions of T cell activation leading to T cell deletion in a death receptor-independent manner are not well characterized. Here we show that human CTLs die through a death receptor-independent apoptotic program upon triggering with a partially agonistic peptide ligand. This apoptotic process exhibits some features of T cell death due to lymphokine deprivation and is blocked by exogenous IL-2. Our data demonstrate that engagement of TCR by MHC-peptide complexes can trigger diverse apoptotic programs of AICD and that the choice between these programs is determined by the agonistic potency of MHC-peptide ligand.  相似文献   
8.
-Chymotrypsin was covalently modified with cellobiose by chemical means. After adsorption on to a porous polyamide support, both the native and the glycosylated immobilized derivatives were used to synthesize a kyotorphin derivative (N-benzoyl-l-tyrosyl-l-argininamide) in acetonitrile/water. Glycosylated chymotrypsin gave a 125% increase in product formation (750 nmol mg–1 catalyst in 3 h) at 60% (v/v) acetonitrile/water. Maximal protective effect of this glycosylation process was at 70% (v/v) acetonitrile/water, at which concentration the half-life of the glycosylated enzyme was 20-times longer than that of the native form (52 min and 2.8 min, respectively).  相似文献   
9.
Differential scanning calorimetry was used to examine the effects of cofilin on the thermal unfolding of actin. Stoichiometric binding increases the thermal stability of both G- and F-actin but at sub-saturating concentrations cofilin destabilizes F-actin. At actin:cofilin molar ratios of 1.5-6 the peaks corresponding to stabilized (66-67 degrees C) and destabilized (56-57 degrees C) F-actin are observed simultaneously in the same thermogram. Destabilizing effects of sub-saturating cofilin are highly cooperative and are observed at actin:cofilin molar ratios as low as 100:1. These effects are abolished by the addition of phalloidin or aluminum fluoride. Conversely, at saturating concentrations, cofilin prevents the stabilizing effects of phalloidin and aluminum fluoride on the F-actin thermal unfolding. These results suggest that cofilin stabilizes those actin subunits to which it directly binds, but destabilizes F-actin with a high cooperativity in neighboring cofilin-free regions.  相似文献   
10.
Necrosis and apoptosis differentially contribute to myocardial injury. Determination of the contribution of these processes in ischemia-reperfusion injury would allow for the preservation of myocardial tissue. Necrosis and apoptosis were investigated in Langendorff-perfused rabbit hearts (n = 47) subjected to 0 (Control group), 5 (GI-5), 10 (GI-10), 15 (GI-15), 20 (GI-20), 25 (GI-25), and 30 min (GI-30) of global ischemia (GI) and 120 min of reperfusion. Myocardial injury was determined by triphenyltetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), bax, bcl2, poly(ADP)ribose polymerase (PARP) cleavage, caspase-3, -8, and -9 cleavage and activity, Fas ligand (FasL), and Fas-activated death domain (FADD). The contribution of apoptosis was determined separately (n = 42) using irreversible caspase-3, -8, and -9 inhibitors. Left ventricular peak developed pressure (LVPDP) and systolic shortening (SS) were significantly decreased and infarct size and TUNEL-positive cells were significantly increased (P < 0.05 vs. Control group) at GI-20, GI-25, and GI-30. Proapoptotic bax, PARP cleavage, and caspase-3 and -9 cleavage and activity were apparent at GI-5 to GI-30. Fas, FADD, and caspase-8 cleavage and activity were unaltered. Irreversible inhibition of caspase-3 and -9 activity significantly decreased (P < 0.05) infarct size at GI-25 and GI-30 but had no effect on LVPDP or SS. Myocardial injury results from a significant increase in both necrosis and apoptosis (P < 0.05 vs. Control group) evident by TUNEL, TTC staining, and caspase activity at GI-20. Intrinsic proapoptotic activation is evident early during ischemia but does not significantly contribute to infarct size before GI-25. The contribution of necrosis to infarct size at GI-20, GI-25, and GI-30 is significantly greater than that of apoptosis. Apoptosis is significantly decreased by caspase inhibition during early reperfusion, but this protection does not improve immediate postischemic functional recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号