首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   10篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   12篇
  2012年   19篇
  2011年   20篇
  2010年   13篇
  2009年   7篇
  2008年   13篇
  2007年   15篇
  2006年   13篇
  2005年   11篇
  2004年   20篇
  2003年   6篇
  2002年   10篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1975年   3篇
  1973年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有241条查询结果,搜索用时 375 毫秒
1.
Transfer efficiencies between phycobilisomes and photosystem II antenna chlorophylls were determined on membrane fragments isolated from low and high light adapted Anabaena cells. The observed increase in energy transfer in high light adapted cells is a consequence of shorter interchromophore distances and a decrease in the number of jumps of the exciting photons. Calculation of the rates of energy transfer and the coupling energies indicate that the weak interaction inferred for energy transfer between phycobilisome and photosystem II in low light adapted cells is replaced by an intermediate interaction in high light adapted cells.Abbreviations LLA low light adapted - HLA high light adapted - PBS phycobilisome - PS photosystem  相似文献   
2.
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor and acceptor quinone complex of the reaction center as identified by absorption changes at 865 nm (bacteriochlorophyll dimer) and 450 nm (quinones) measured simultaneously with the fluorescence. Based on redox titration and gradual bleaching of the dimer, the yield of fluorescence from reaction centers could be separated into a time-dependent (originating from the dimer) and a constant part (coming from contaminating pigment (detached bacteriochlorin)). The origin was also confirmed by the corresponding excitation spectra of the 915 nm fluorescence. The ratio of yields of constant fluorescence over variable fluorescence was much smaller in Rhodobacter sphaeroides (0.15±0.1) than in Rhodobacter capsulatus (1.2±0.3). It was shown that the changes in fluorescence yield reflected the disappearance of the dimer and the quenching by the oxidized primary quinone. The redox changes of the secondary quinone did not have any influence on the yield but excess quinone in the solution quenched the (constant part of) fluorescence. The relative yields of fluorescence in different redox states of the reaction center were tabulated. The fluorescence of the dimer can be used as an effective tool in studies of redox reactions in reaction centers, an alternative to the measurements of absorption kinetics.Abbreviations Bchl bacteriochlorophyll - Bpheo bacteriopheophytin - D electron donor to P+ - P bacteriochlorophyll dimer - Q quinone acceptor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQ6 ubiquinone-30  相似文献   
3.
4.
Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change‐driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k‐strategist) signatures, to seasonally displace more copiotrophic (r‐strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non‐EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time‐series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate‐driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.  相似文献   
5.
The racemic mixture of pomalidomide (POM), a second‐generation immunomodulatory uncharged drug, was separated into enantiomers by capillary zone electrophoresis for the first time. Seven different chargeable cyclodextrin (CD) derivatives were screened as complexing agents and chiral selectors, investigating the stability of the POM‐CD inclusion complexes and their enantiodiscriminating capacities. Based on preliminary experiments, carboxymethyl‐β‐CD (CM‐β‐CD) was found to be the most effective chiral selector. Factors influencing enantioseparation were systematically optimized, using an orthogonal experimental design. Optimal parameters (background electrolyte [BGE]: 50 mM Tris‐acetate buffer, pH 6.5, containing 15 mM CM‐β‐CD; capillary temperature: 20°C; voltage applied +15 kV) allowed baseline separation of POM enantiomers with a resolution as high as 4.87. The developed method was validated, in terms of sensitivity (limit of detection and limit of quantification), linearity, accuracy, repeatability, and intermediate precision. Chirality 28:199–203, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
6.
We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.  相似文献   
7.
Gerencsér L  Laczkó G  Maróti P 《Biochemistry》1999,38(51):16866-16875
To understand the details of rate limitation of turnover of the photosynthetic reaction center, photooxidation of horse heart cytochrome c by reaction center from Rhodobacter spheroides in detergent dispersion has been examined by intense continuous illumination under a wide variety of conditions of cytochrome concentration, ionic strength, viscosity, temperature, light intensity, and pH. The observed steady-state turnover rate of the cytochrome was not light intensity limited. In accordance with recent findings [Larson, J. W., Wells, T. A., and Wraight, C. A. (1998) Biophys. J. 74 (2), A76], the turnover rate increased with increasing bulk ionic strength in the range of 0-40 mM NaCl from 1000 up to 2300 s(-)(1) and then decreased at high ionic strength under conditions of excess cytochrome and ubiquinone and a photochemical rate constant of 4500 s(-)(1). Furthermore, we found the following: (i) The contribution of donor (cytochrome c) and acceptor (ubiquinone) sides as well as the binding of reduced and the release of oxidized cytochrome c could be separated in the observed kinetics. At neutral and acidic pH (when the proton transfer is not rate limiting) and at low or moderate ionic strength, the turnover rate of the reaction center was limited primarily by the low release rate of the photooxidized cytochrome c (product inhibition). At high ionic strength, however, the binding rate of the reduced cytochrome c decreased dramatically and became the bottleneck. The observed activation energy of the steady-state turnover rate reflected the changes in limiting mechanisms: 1.5 kcal/mol at 4 mM and 5.7 kcal/mol at 100 mM ionic strength. A similar distinction was observed in the viscosity dependence of the turnover rate: the decrease was steep (eta(-)(1)) at 40 and 100 mM ionic strengths and moderate (eta(-)(0.2)) under low-salt (4 mM) conditions. (ii) The rate of quinone exchange at the acceptor side with excess ubiquinone-30 or ubiquinone-50 was higher than the cytochrome exchange at the donor side and did not limit the observed rate of cytochrome turnover. (iii) Multivalent cations exerted effects not only through ionic strength (screening) but also by direct interaction with surface charge groups (ion-pair production). Heavy metal ion Cd(2+) bound to the RC with apparent dissociation constant of 14 microM. (iv) A two-state model of collisional interaction between reaction center and cytochrome c together with simple electrostatic considerations in the calculation of rate constants was generally sufficient to describe the kinetics of photooxidation of dimer and cytochrome c. (v) The pH dependence of cytochrome turnover rate indicated that the steady-state turnover rate of the cytochrome under high light conditions was not determined by the isoelectric point of the reaction center (pI = 6. 1) but by the carboxyl residues near the docking site.  相似文献   
8.
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose.  相似文献   
9.
Oligonucleotide microarrays in microbial diagnostics   总被引:7,自引:0,他引:7  
Oligonucleotide microarrays offer a fast, high-throughput alternative for the parallel detection of microbes from virtually any sample. The application potential spreads across most sectors of life sciences, including environmental microbiology and microbial ecology; human, veterinary, food and plant diagnostics; water quality control; industrial microbiology, and so on. The past two years have witnessed a rapid increase of research in this field. Many alternative techniques were developed and validated as seen in 'proof-of-concept' articles. Publications reporting on the application of oligonucleotide microarray technology for microbial diagnostics in microbiology driven projects have just started to appear. Current and future technical and bioinformatics developments will inevitably improve the potential of this technology further.  相似文献   
10.
Seiboth B  Karaffa L  Sándor E  Kubicek C 《Gene》2002,295(1):143-149
As part of a comprehensive study on lactose metabolism in Hypocrea jecorina (anamorph: Trichoderma reesei), a genomic clone of the gal10 gene encoding H. jecorina uridine 5'-diphosphate (UDP)-glucose 4-epimerase has been cloned and sequenced. It contains an open reading frame of 1548-base pair, interrupted by three introns, and encoding a 370-amino acids protein with similarity to pro- and eukaryotic UDP-glucose-4-epimerases. H. jecorina Gal10 does not contain the C-terminal mutarotase domain which is present in yeast Gal10 proteins but is able to functionally complement a corresponding Saccharomyces cerevisiae gal10 mutant. gal10 is not clustered with other H. jecorina gal genes (gal7, gene encoding galactose-1-phosphate uridylyltransferase and gal1, gene encoding galactokinase). The genomic location of H. jecorina gal10 and gal7 was syntenic with that in Neurospora crassa and colinear over an area of 6 and 3.5-kilobase. gal10 is constitutively expressed, and--unlike H. jecorina gal7--not further stimulated by D-galactose or L-arabinose or its corresponding polyols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号