首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1966年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
The antioxidant food additives 2(3)-tert-butyl-4-hydroxyanisole (BHA), 2,6-di(tert-butyl)-p-cresol (BHT) and the methyl and propyl esters of gallic acid inhibited Trypanosoma cruzi culture growth and oxygen consumption. The I50 values for growth and oxygen uptake with BHA were 0.284 and 0.400 and for BHT 0.083 and 0.235 mM, respectively. Moreover, BHA inhibited the respiration of several tumor cells, as well as of the procyclic and bloodstream trypomastigote forms of T. brucei brucei, with I50 in the range 0.29-0.52 mM. Inhibition of the parasites' oxygen uptake by BHA was not of the pure Michaelis-Menten type, but may be of a mixed form. It is postulated that these compounds are inhibitors because they resemble ubiquinone.  相似文献   
2.
Role of glutathione in the susceptibility of Trypanosoma cruzi to drugs   总被引:1,自引:0,他引:1  
1. Glutathione (G-SH) concentration, gamma-glutamyltranspeptidase and glutathione S-transferase activities were studied in several strains of T. cruzi epimastigotes. GSH varied from 1.04 mM for the LQ strain to 0.61 mM for the Tulahuen strain. 2. Cultures of the LQ strain presented more resistance to drugs than those of the Tulahuen. It was necessary a concentration of nifurtimox 4 times higher and one of benznidazole 10 times higher in order to inhibit approximately to 50% the growth of LQ strain cultures when compared with the Tulahuen strain. 3. Buthionine sulfoximine decreased the concentration of glutathione to about 50% in the LQ and Tulahuen strains and potentiated the toxicity of nifurtimox and benznidazole in T. cruzi epimastigote cultures. These results suggest that glutathione is an important factor in the resistance of T. cruzi to nifurtimox and benznidazole.  相似文献   
3.
Knowledge on how landscape heterogeneity shapes host–parasite interactions is central to understand the emergence, dynamics and evolution of infectious diseases. However, this is an underexplored subject, particularly for plant–virus systems. Here, we analyse how landscape heterogeneity influences the prevalence, spatial genetic structure, and temporal dynamics of Pepper golden mosaic and Pepper huasteco yellow vein begomoviruses infecting populations of the wild pepper Capsicum annuum glabriusculum (chiltepin) in Mexico. Environmental heterogeneity occurred at different nested spatial scales (host populations within biogeographical provinces), with levels of human management varying among host population within a province. Results indicate that landscape heterogeneity affects the epidemiology and genetic structure of chiltepin‐infecting begomoviruses in a scale‐specific manner, probably related to conditions favouring the viruses' whitefly vector and its dispersion. Increased levels of human management of the host populations were associated with higher virus prevalence and erased the spatial genetic structure of the virus populations. Also, environmental heterogeneity similarly shaped the spatial genetic structures of host and viruses. This resulted in the congruence between host and virus phylogenies, which does not seem to be due to host‐virus co‐evolution. Thus, results provide evidence of the key role of landscape heterogeneity in determining plant–virus interactions.  相似文献   
4.
Dinitrogen fixation in the world's oceans   总被引:24,自引:1,他引:23  
Karl  D.  Michaels  A.  Bergman  B.  Capone  D.  Carpenter  E.  Letelier  R.  Lipschultz  F.  Paerl  H.  Sigman  D.  Stal  L. 《Biogeochemistry》2002,(1):47-98
The surface water of themarine environment has traditionally beenviewed as a nitrogen (N) limited habitat, andthis has guided the development of conceptualbiogeochemical models focusing largely on thereservoir of nitrate as the critical source ofN to sustain primary productivity. However,selected groups of Bacteria, includingcyanobacteria, and Archaea canutilize dinitrogen (N2) as an alternativeN source. In the marine environment, thesemicroorganisms can have profound effects on netcommunity production processes and can impactthe coupling of C-N-P cycles as well as the netoceanic sequestration of atmospheric carbondioxide. As one component of an integrated Nitrogen Transport and Transformations project, we have begun to re-assess ourunderstanding of (1) the biotic sources andrates of N2 fixation in the world'soceans, (2) the major controls on rates ofoceanic N2 fixation, (3) the significanceof this N2 fixation for the global carboncycle and (4) the role of human activities inthe alteration of oceanic N2 fixation. Preliminary results indicate that rates ofN2 fixation, especially in subtropical andtropical open ocean habitats, have a major rolein the global marine N budget. Iron (Fe)bioavailability appears to be an importantcontrol and is, therefore, critical inextrapolation to global rates of N2fixation. Anthropogenic perturbations mayalter N2 fixation in coastal environmentsthrough habitat destruction and eutrophication,and open ocean N2 fixation may be enhancedby warming and increased stratification of theupper water column. Global anthropogenic andclimatic changes may also affect N2fixation rates, for example by altering dustinputs (i.e. Fe) or by expansion ofsubtropical boundaries. Some recent estimatesof global ocean N2 fixation are in therange of 100–200 Tg N (1–2 × 1014 g N)yr–1, but have large uncertainties. Theseestimates are nearly an order of magnitudegreater than historical, pre-1980 estimates,but approach modern estimates of oceanicdenitrification.  相似文献   
5.
6.
It is generally accepted that copper toxicity is a consequence of the generation of reactive oxygen species (ROS) by copper ions via Fenton or Haber-Weiss reactions. Copper ions display high affinity for thiol and amino groups occurring in proteins. Thus, specialized proteins containing clusters of these groups transport and store copper ions, hampering their potential toxicity. This mechanism, however, may be overwhelmed under copper overloading conditions, in which copper ions may bind to thiol groups occurring in proteins non-related to copper metabolism. In this study, we propose that indiscriminate copper binding may lead to damaging consequences to protein structure, modifying their biological functions. Therefore, we treated liver subcellular membrane fractions, including microsomes, with Cu2+ ions either alone or in the presence of ascorbate (Cu2+/ascorbate); we then assayed both copper-binding to membranes, and microsomal cytochrome P450 oxidative system and GSH-transferase activities. All assayed sub-cellular membrane fractions treated with Cu2+ alone displayed Cu2+-binding, which was significantly increased in the presence of Zn2+, Hg2+, Cd2+, Ag+1 and As3+. Treatment of microsomes with Cu2+ in the μM range decreased the microsomal thiol content; in the presence of ascorbate, Cu2+ added in the nM concentrations range induced a significant microsomal lipoperoxidation; noteworthy, increasing Cu2+ concentration to ≥50 μM led to non-detectable lipoperoxidation levels. On the other hand, μM Cu2+ led to the inhibition of the enzymatic activities tested to the same extent in either presence or absence of ascorbate. We discuss the possible significance of indiscriminate copper binding to thiol proteins as a possible mechanism underlying copper-induced toxicity.  相似文献   
7.
The cyanobacterium Trichodesmium is considered the most abundant and active nitrogen fixing plankton genus in tropical and subtropical marine waters. In the northern subtropical gyres of the Pacific and Atlantic Oceans, this organism is notable as a source of new production and as a potential biological shuttle for phosphorus to surface waters. We have conducted recent laboratory experiments revealing the remarkable stoichiometric flexibility exhibited by this diazotroph. These results indicate that Trichodesmium spp. are capable of viable growth with carbon to phosphorus ratios approximately 16 times Redfield stoichiometry. Such P-sparing is clearly an adaptation to the oligotrophic environments from which these cultures were isolated. Building on this research, additional work was performed to determine the maximal temporal scale of vertical migration and the implicit dark period physiology. An experiment was designed to assess the physiological changes that would occur as cells of varying growth stages migrated below the euphotic zone into more phosphorus replete waters. At different stages of growth sub-samples of phosphorus replete or phosphorus limited cells were transferred to dark conditions. For each dark bottle, chl-a, particulate carbon, phosphorus and nitrogen, trichome count and fluorescence parameters were measured daily. Our experimental results indicate that the maximum duration of dark period survival (and hence vertical migration) is approximately three days during which period cells were able to fully recover from light depravation and resume typical growth rates. The knowledge of Trichodesmium bioenergetics gained from this research will serve to further constrain the potential role of Trichodesmium spp. in biogeochemical cycling.  相似文献   
8.
Tropical mountains are areas of high species richness and endemism. Two historical phenomena may have contributed to this: (i) fragmentation and isolation of habitats may have promoted the genetic differentiation of populations and increased the possibility of allopatric divergence and speciation and (ii) the mountain areas may have allowed long‐term population persistence during global climate fluctuations. These two phenomena have been studied using either species occurrence data or estimating species divergence times. However, only few studies have used intraspecific genetic data to analyse the mechanisms by which endemism may emerge at the microevolutionary scale. Here, we use landscape analysis of genomic SNP data sampled from two high‐elevation plant species from an archipelago of tropical sky islands (the Trans‐Mexican Volcanic Belt) to test for population genetic differentiation, synchronous demographic changes and habitat persistence. We show that genetic differentiation can be explained by the degree of glacial habitat connectivity among mountains and that mountains have facilitated the persistence of populations throughout glacial/interglacial cycles. Our results support the ongoing role of tropical mountains as cradles for biodiversity by uncovering cryptic differentiation and limits to gene flow.  相似文献   
9.
We investigated the effects of elevated pCO2 on cultures of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH8501. Using CO2-enriched air, cultures grown in batch mode under high light intensity were exposed to initial conditions approximating current atmospheric CO2 concentrations (∼400 ppm) as well as CO2 levels corresponding to low- and high-end predictions for the year 2100 (∼750 and 1000 ppm). Following acclimation to CO2 levels, the concentrations of particulate carbon (PC), particulate nitrogen (PN), and cells were measured over the diurnal cycle for a six-day period spanning exponential and early stationary growth phases. High rates of photosynthesis and respiration resulted in biologically induced pCO2 fluctuations in all treatments. Despite this observed pCO2 variability, and consistent with previous experiments conducted under stable pCO2 conditions, we observed that elevated mean pCO2 enhanced rates of PC production, PN production, and growth. During exponential growth phase, rates of PC and PN production increased by ∼1.2- and ∼1.5-fold in the mid- and high-CO2 treatments, respectively, when compared to the low-CO2 treatment. Elevated pCO2 also enhanced PC and PN production rates during early stationary growth phase. In all treatments, PC and PN cellular content displayed a strong diurnal rhythm, with particulate C:N molar ratios reaching a high of 22∶1 in the light and a low of 5.5∶1 in the dark. The pCO2 enhancement of metabolic rates persisted despite pCO2 variability, suggesting a consistent positive response of Crocosphaera to elevated and fluctuating pCO2 conditions.  相似文献   
10.
t-Butyl-4-hydroxyanisole, an antioxidant food additive, inhibited the growth of Trypanosoma cruzi by almost 100% at 0.5 mM concentration. This compound inhibited 70% of oxygen consumption of epimastigotes. The redox level of NAD(P) was shifted to a more reduced state and inversely the redox level of cytochrome b changed to a more oxidized state. This hydroxyanisole thus is a new electron transport chain inhibitor. This compound and related ones, or the respiratory chain of T. cruzi, may be important in the design of antichagasic drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号