首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2007年   5篇
  2005年   3篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有32条查询结果,搜索用时 700 毫秒
1.
Microbiology - The community of anoxygenic phototrophic bacteria (APB) from the water column of the meromictic Lake Trekhtsvetnoe (Kandalaksha Bay, White Sea, Russia) was studied in March 2012 and...  相似文献   
2.
The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4‐like phages indicates that nearly all the modular swapping involving the C‐terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4‐like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes.  相似文献   
3.
Biopharmaceutical industry currently produces considerable quantity of novel recombinant preparations by way of overexpression in Escherichia coli cells, an inexpensive, efficient, time-proven, and practically feasible system of heterologous expression. Due to the instability of maintenance and inheritance of expression vectors in producer cells, the cells that have spontaneously lost the plasmid gain a significant selective advantage over the cells producing a heterologous protein and accumulate in the fermentor. For solution of this problem, it is proposed to develop a new generation of expression vectors with high stability of inheritance in the absence of external selective pressure, using a replicon of phage N15, which possesses its own system for active distribution of plasmid copies in the daughter cells, supplemented by a toxin-antitoxin genetic module preventing the loss of a plasmid. Two new addiction modules homologous to the known ccdAB and mazEF systems were isolated from natural enterobacterial populations and characterized. The testing showed more effective operation of the ccdAB module. The latter was a basis for construction of new expression vectors pN15E41 and pN15E61 demonstrating the high synergism of action of the plasmid segregation systems and the addiction module and directly applicable for biotechnological practice.  相似文献   
4.
Letarov AV 《Genetika》1998,34(11):1461-1469
The problem of the origin and evolution of viruses and, in particular, the origin and evolution of bacteriophages is of considerable interest. However, so far, this problem has not been solved with quantitative methods of molecular systematics. In the present study, an attempt to reconstruct the possible paths of appearance and evolution of bacteriophages based on their structural features and morphogenesis, as well as general characteristics of their life cycles and genome organization, was carried out. A scheme describing phylogeny of the main bacteriophage groups and evolution of their life cycles is suggested. Existence of two independently evaluating types of morphogenesis ("budding outward" and "budding inward") is postulated.  相似文献   
5.
Carboxypeptidase T precursor from Thermoactinomyces vulgaris, which fails to contain its own leader peptide, has been expressed in Escherichia coli as insoluble cytoplasmic inclusion bodies. The yield of a washed recombinant protein from 1 L of culture liquid was about 60 mg. The obtained inclusion bodies were denatured in 6 M guanidine-HCl and then renatured by a rapid dilution. The important role of calcium for the complete stabilization of the refolded carboxypeptidase T precursor was established. After removal of minor admixture proteins by gel-filtration through Superdex 75, an electrophoretically homogeneous preparation of the native precursor of carboxypeptidase T was obtained. Processing of the resulting protein by subtilisin led to the formation of the mature carboxypeptidase T in which N-terminal sequence, molecular size, thermal stability, and catalytic properties were comparable to those of the natural enzyme.  相似文献   
6.
The diversity of coliphages and indigenous coliform strains (ICSs) simultaneously present in horse feces was investigated by culture-based and molecular methods. The richness of coliforms (as estimated by the Chao1 method) is about 1,000 individual ICSs distinguishable by genomic fingerprinting present in a single sample of feces. This unexpectedly high value indicates that some factor limits the competition of coliform bacteria in the horse gut microbial system. In contrast, the diversity of phages active against any selected ICS is generally limited to one to three viral genotypes present in the sample. The sensitivities of different ICSs to simultaneously present coliphages overlap only slightly; the phages isolated from the same sample on different ICSs are usually unrelated. As a result, the titers of phages in fecal extract as determined for different Escherichia coli strains and ICSs may differ by several orders of magnitude. Summarizing all the data, we propose that coliphage infection may provide a selection pressure that maintains the high level of coliform diversity, restricting the possibility of a few best competitors outgrowing other ICSs. We also observed high-magnitude temporal variations of coliphage titers as determined using an E. coli C600 test culture in the same animal during a 16-day period of monitoring. No correlation with total coliform count was observed. These results are in good agreement with our hypothesis.  相似文献   
7.
Kulikov  E. E.  Golomidova  A. K.  Morozova  V. V.  Kozlova  Yu. N.  Letarov  A. V. 《Microbiology》2019,88(6):769-772
Microbiology - The T5 group bacteriophages, which infect a number of enterobacterial species and strains, are useful objects for obtaining therapeutic phage preparations with broad specificity. The...  相似文献   
8.
The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-d-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.  相似文献   
9.
The wac gene product (gpwac) or fibritin of bacteriophage T4 forms the six fibers that radiate from the phage neck. During phage morphogenesis these whiskers bind the long tail fibers (LTFs) and facilitate their attachment to the phage baseplate. After the cell lysis, the gpwac fibers function as part of an environmental sensing device that retains the LTFs in a retracted configuration and thus prevents phage adsorption in unfavorable conditions. A comparative analysis of the sequences of 5 wac gene orthologs from various T4-type phages reveals that the approximately 50-amino-acid N-terminal domain is the only highly conserved segment of the protein. This sequence conservation is probably a direct consequence of the domain's strong and specific interactions with the neck proteins. The sequence of the central fibrous region of gpwac is highly plastic, with only the heptad periodicity of the coiled-coil structure being conserved. In the various gpwac sequences, the small C-terminal domain essential for initiation of the folding of T4 gpwac is replaced by unrelated sequences of unknown origin. When a distant T4-type phage has a novel C-terminal gpwac sequence, the phage's gp36 sequence that is located at the knee joint of the LTF invariably has a novel domain in its C terminus as well. The covariance of these two sequences is compatible with genetic data suggesting that the C termini of gpwac and gp36 engage in a protein-protein interaction that controls phage infectivity. These results add to the limited evidence for domain swapping in the evolution of phage structural proteins.  相似文献   
10.
Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号