首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   22篇
  45篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1982年   3篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1965年   2篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Genomic complexity and plasticity of Burkholderia cepacia   总被引:6,自引:1,他引:5  
Abstract Burkholderia cepacia has attracted attention because of its extraordinary degradative abilities and its potential as a pathogen for plants and for humans. This bacterium was formerly considered to belong to the genus Pseudomonas in the γ-subclass of the Proteobacteria , but recently has been assigned to the β-subclass based on rrn gene sequence analyses and other key phenotypic characteristics. The B. cepacia genome is comprised of multiple chromosomes and is rich in insertion sequences. These two features may have played a key role in the evolution of novel degradative functions and the unusual adaptability of this bacterium.  相似文献   
2.
Pseudomonas cepacia produced a characteristic green sheen on EMB-galactose plates owing to production of galactonic acid by the constitutive membrane-associated glucose dehydrogenase of this bacterium. Mutants isolated as glucose dehydrogenase deficient (Gcd) also were deficient in membrane-associated galactose dehydrogenase. A strain that formed glucose dehydrogenase at 30°C but not at 40°C was also temperature sensitive with respect to formation of galactose dehydrogenase. The Gcd strains still utilized galactose. A second, NAD-specific, galactose dehydrogenase (not membrane associated) along with a transport system for galactose were induced during growth on galactose and constituted an alternative pathway of conversion of galactose to galactonate. Enzymes of the De Ley-Doudoroff pathway of conversion of galactonate to pyruvate and glyceraldehyde-3-phosphate were induced during growth on galactose. Unexpectedly, growth on galactose also elicited formation of enzymes of the Entner-Doudoroff (ED) route. Furthermore, mutants blocked in the ED pathway grew poorly on galactose. One interpretation of these findings is that glyceraldehyde-3-phosphate formed from galactose via the De Ley-Doudoroff route (by cleavage of 2-keto-3-deoxy-6-phosphogalaconate) is reconverted to hexose phosphate and metabolized via the ED pathway.  相似文献   
3.
Growth of Pseudomonas cepacia 249 on D-threonine required a mutation to permit D-hydroxyamino acid deaminase formation and L-valine to overcome alpha-ketobutyrate toxicity. Strain 249 lacked a second D-hydroxyamino acid deaminase formed by other strains.  相似文献   
4.
Pseudomonas cepacia grew rapidly using a mixture of all three branched chain amino acids as carbon source, but failed to use individual branched chain amino acids as sole carbon source. Extracts of bacteria grown on branched chain amino acids had between 2- and 3-fold higher levels of -ketoglutarate-dependent branched chain amino acid aminotransferase activity than extracts of glucose-grown bacteria. The increase in enzyme activity was due to the presence of a second aminotransferase not detected in extracts of glucose-grown bacteria. The enzyme, which presumably plays a role in branched chain amino acid degradation, had an apparent molecular weight (mol. wt.) of 75,000. The other aminotransferase was formed constitutively and apparently functions in synthesis of branched chain amino acids. It was more stable than the 75,000 mol.wt. enzyme, and was purified to homogeneity and found to be a 180,000 mol.wt. oligomer containing 6 subunits of approximately 30,000 mol.wt. Antiserum prepared against the purified enzyme inhibited its activity but failed to influence the activity of the 75,000 mol.wt. aminotransferase, suggesting that the two isoenzymes are encoded by different genes.  相似文献   
5.
Growth of Pseudomonas cepacia (P. multivorans) on serine depended upon induction of a previously undescribed L-serine deaminase distinct from threonine deaminase. Formation of the enzyme was induced during growth on serine, glycine, or threonine. The induction pattern reflected a role of the enzyme in catabolism of these three amino acids. Both threonine and glycine supported growth of serine auxotrophs and were presumably converted to serine and pyruvate in the course of their degradation. Mutant strains deficient in serine deaminase, or unable to use pyruvate as a carbon source, failed to utilize serine or glycine and grew poorly with threonine, whereas strains deficient in threonine dehydrogenase or alpha-amino beta-ketobutyrate:coenzyme A ligase (which together convert threonine to glycine and acetyl coenzyme A) failed to utilize threonine or derepress serine deaminase in the presence of this amino acid. The results confirm for the first time the role of alpha-amin beta-ketobutyrate:coenzyme A ligase in threonine degradation and indicate that threonine does not mimic serine as an inducer of serine deaminase.  相似文献   
6.
Growth of Pseudomonas cepacia on fructose, mannitol, or sorbitol depended on formation of an inducible fructokinase (forming fructose-6-phosphate) and the presence of enzymes of the Entner-Doudoroff pathway. Mutants deficient in any of these enzymes failed to utilize the aforementioned carbohydrates. Fructokinase deficiency did not affect growth of the bacteria on glucose. Fructose was accumulated intracellularly by active transport. Mutants blocked in transport of fructose grew normally on mannitol or sorbitol despite their inability to utilize fructose. Growth on either of these hexitols or on galactitol was accompanied by induction of two hexitol dehydrogenases, one active primarily with mannitol and the other active with sorbitol and galactitol. As expected, a mutant deficient in mannitol dehydrogenase failed to utilize mannitol as a carbon and energy source but grew normally on sorbitol and galactitol. Extracts of bacteria grown on fructose, mannitol, or sorbitol and higher levels of phosphoglucose isomerase than extracts of bacteria grown on alternate carbon sources such as citrate or phthalate. The higher levels were due to appearance of a second phosphoglucose isomerase species not present in cells with the lower activity. The results indicate that the initial steps in fructose utilization by P. cepacia differ from those of most other pseudomonads, which transport fructose by phosphoenolpyruvate-dependent translocation, forming fructose-1-phosphate, and suggest that degradation of fructose, mannitol, and sorbitol occurs primarily via the Entner-Doudoroff pathway.  相似文献   
7.

Introduction

Positron Emission Tomography - Computer Tomography (PET-CT) is an interesting imaging technique to visualize Ankylosing Spondylitis (AS) activity using specific PET tracers. Previous studies have shown that the PET tracers [18F]FDG and [11C](R)PK11195 can target inflammation (synovitis) in rheumatoid arthritis (RA) and may therefore be useful in AS. Another interesting tracer for AS is [18F]Fluoride, which targets bone formation. In a pilot setting, the potential of PET-CT in imaging AS activity was tested using different tracers, with Magnetic Resonance Imaging (MRI) and conventional radiographs as reference.

Methods

In a stepwise approach different PET tracers were investigated. First, whole body [18F]FDG and [11C](R)PK11195 PET-CT scans were obtained of ten AS patients fulfilling the modified New York criteria. According to the BASDAI five of these patients had low and five had high disease activity. Secondly, an extra PET-CT scan using [18F]Fluoride was made of two additional AS patients with high disease activity. MRI scans of the total spine and sacroiliac joints were performed, and conventional radiographs of the total spine and sacroiliac joints were available for all patients. Scans and radiographs were visually scored by two observers blinded for clinical data.

Results

No increased [18F]FDG and [11C](R)PK11195 uptake was noticed on PET-CT scans of the first 10 patients. In contrast, MRI demonstrated a total of five bone edema lesions in three out of 10 patients. In the two additional AS patients scanned with [18F]Fluoride PET-CT, [18F]Fluoride depicted 17 regions with increased uptake in both vertebral column and sacroiliac joints. In contrast, [18F]FDG depicted only three lesions, with an uptake of five times lower compared to [18F]Fluoride, and again no [11C](R)PK11195 positive lesions were found. In these two patients, MRI detected nine lesions and six out of nine matched with the anatomical position of [18F]Fluoride uptake. Conventional radiographs showed structural bony changes in 11 out of 17 [18F]Fluoride PET positive lesions.

Conclusions

Our PET-CT data suggest that AS activity is reflected by bone activity (formation) rather than inflammation. The results also show the potential value of PET-CT for imaging AS activity using the bone tracer [18F]Fluoride. In contrast to active RA, inflammation tracers [18F]FDG and [11C](R)PK11195 appeared to be less useful for AS imaging.  相似文献   
8.

Background  

The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei.  相似文献   
9.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   
10.
This study demonstrated that transposable elements in Pseudomonas cepacia could be inserted upstream of a poorly expressed gene and increase its expression more than 30-fold. Five elements, TnPc1, IS402, IS403, IS404, and IS405, were isolated by their ability to increase expression of the beta-lactamase gene of the broad-host-range plasmid pRP1. Increased expression resulted only from insertion of these elements, suggesting that insertional activation is an important means of elevating gene expression in this organism. Four of the elements inserted between a PstI site within the beta-lactamase gene and a BamHI site located 375 base pairs upstream of its promoter. The element IS403 inserted distal to the BamHI site within the coding region for the gene tnpR, suggesting that insertional activation can act over greater than expected distances. In addition, the element IS402 activated the beta-lactamase genes carried on plasmids pRP1 and pMR5 (temperature-sensitive pRP1) equally well in opposite orientations, demonstrating that insertional activation by this element occurs independent of its orientation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号