During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H+/K+-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H+/K+-ATPase and the Notch signaling pathway. 相似文献
The hypothesis of the present study was that bacterial communities would differentiate under Eucalyptus camaldulensis and that an enhancement of arbuscular mycorrhizal (AM) density would minimize this exotic plant species effect. Treatments consisted of control plants, preplanting fertilizer application and AM inoculation. After 4 months of culture in autoclaved soil, E. camaldulensis seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without E. camaldulensis seedlings. After 12 months, effects of fertilizer amendment and AM inoculation were measured on the growth of Eucalyptus seedlings and on soil microbial communities. The results clearly show that this plant species significantly modified the soil bacterial community. Both community structure (assessed by denaturing gradient gel electrophoresis profiles) and function (assessed by substrate-induced respiration responses including soil catabolic evenness) were significantly affected. Such changes in the bacterial structure and function were accompanied by disturbances in the composition of the herbaceous plant species layer. These results highlight the role of AM symbiosis in the processes involved in soil bio-functioning and plant coexistence and in afforestation programmes with exotic tree species that target preservation of native plant diversity. 相似文献
Members of the Thermococcales are anaerobic Archaea belonging to the kingdom Euryarchaea that are studied in many laboratories as model organisms for hyperthermophiles. We describe here a molecular analysis of 86 new Thermococcales isolates collected from six different chimneys of a single hydrothermal field located in the 13°N 104°W segment of the East Pacific ridge at a depth of 2,330 m. These isolates were sorted by randomly amplified polymorphic DNA (RAPD) fingerprinting into nine groups, and nine unique RAPD profiles were obtained. One RAPD group corresponds to new isolates of Thermococcus hydrothermalis, whereas all other groups and isolates with unique profiles are different from the 22 reference strains included in this study. Analysis of 16S rRNA gene sequences of representatives of each RAPD group and unique profiles showed that one group corresponds to Pyrococcus strains, whereas all the other isolates are Thermococcus strains. We estimated that our collection may contain at least 11 new species. These putative species, isolated from a single area of hydrothermal deep-sea vents, are dispersed in the 16S rRNA tree among the reference strains previously isolated from diverse hot environments (terrestrial, shallow water, hydrothermal vents) located around the world, suggesting that there is a high degree of dispersal of Thermococcales. About one-half of our isolates contain extrachromosomal elements that could be used to search for novel replication proteins and to develop genetic tools for hyperthermophiles. 相似文献
Re-examination, using molecular tools, of the diversity of haemosporidian parasites (among which the agents of human malaria are the best known) has generally led to rearrangements of traditional classifications. In this study, we explored the diversity of haemosporidian parasites infecting vertebrate species (particularly mammals, birds and reptiles) living in the forests of Gabon (Central Africa), by analyzing a collection of 492 bushmeat samples. We found that samples from five mammalian species (four duiker and one pangolin species), one bird and one turtle species were infected by haemosporidian parasites. In duikers (from which most of the infected specimens were obtained), we demonstrated the existence of at least two distinct parasite lineages related to Polychromophilus species (i.e., bat haemosporidian parasites) and to sauropsid Plasmodium (from birds and lizards). Molecular screening of sylvatic mosquitoes captured during a longitudinal survey revealed the presence of these haemosporidian parasite lineages also in several Anopheles species, suggesting a potential role in their transmission. Our results show that, differently from what was previously thought, several independent clades of haemosporidian parasites (family Plasmodiidae) infect mammals and are transmitted by anopheline mosquitoes. 相似文献
Plant and Soil - Soil-feeding termite mounds are an important, highly specific soil microbial compartment in semi-arid savannas. The aim of this study was to determine the role of these mounds in... 相似文献