首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   14篇
  101篇
  2021年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1976年   3篇
  1975年   1篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
S Gibson  C Y Jung  M Takahashi  J Lenard 《Biochemistry》1986,25(20):6264-6268
The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the "monomer" of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
3.
D H Madoff  J Lenard 《Cell》1982,28(4):821-829
The intracellular transport and certain posttranslational modifications of the large glycoprotein (G1) of LaCrosse virus (LAC) in BHK cells have been studied. G1 from released LAC virus was characterized by complex oligosaccharides (endo H-resistant) and covalently attached fatty acid. Only a small fraction of total cellular G1 was present on the baby hamster kidney cell surface. Cell-surface G1 contained complex oligosaccharides, while total G1 in infected cells contained largely unprocessed (endo H-sensitive) oligosaccharides. In addition, cell G1 contained significantly less fatty acid than virion-associated G1. Pulse-chase experiments showed that the oligosaccharides of G1 were processed to the complex from much more slowly than the oligosaccharides of the vesicular stomatitis virus (VSV) glycoprotein (G). In addition, transit of LAC G1 to the cell surface and into extracellular virions was two to three fold slower than the transit of VSV G. Thus LAC G1 accumulates intracellularly and is only slowly processed by intracellular processing enzymes. Treatment with monensin caused accumulation in the cell of a form of G1 with partial sensitivity toward endo H, suggesting that monensin may act to inhibit the glycosylation process directly.  相似文献   
4.
5.
The protein that is responsible for specific, high-affinity binding of insulin to the surface of Neurospora crassa cells has been purified to homogeneity. The insulin binding activity of solubilized plasma membranes resembled that of intact cells with regard to affinity of binding, specificity for mammalian insulins, and amount of insulin bound per cell. Insulin binding activity was purified from Triton X-100 solubilized membranes in two steps: FPLC on a MonoQ HR5/5 column; and affinity chromatography on insulin-agarose. The pure material migrated as a single band of ca. 66 kDa on SDS gels, pI = 7.4 by isoelectric focusing. The protein bound 5.34 pmol of insulin/micrograms, or 35% of that expected for univalent binding. Cross-linking of 125I-insulin to pure protein or to solubilized membranes revealed a single labeled band of 67-70 kDa on SDS gels. In nonreducing native gels, two labeled bands of ca. 55 and 110 kDa were produced after cross-linking, and two bands of similar molecular weight bound iodinated insulin after transfer to nitrocellulose filters. These may correspond to active monomer and dimer forms. The pure protein possessed no protein kinase activity against itself, or against exogenous substrates (histone H2, casein, or the synthetic peptide Glu80-Tyr20), and possessed no detectable phosphorylated amino acids. It is suggested, however, that this 66-kDa protein is the "receptor" that mediates insulin-induced downstream metabolic effects.  相似文献   
6.
The single glycoprotein (G) of vesiclar stomatitis virus (VSV) was isolated in nearly quantitative yield by extraction of the purified virions with 0.05 M octyl-β-D- glucoside (OG) in 0.01 M sodium phosphate, pH 8.0. The extract contained essentially all of the viral phospholipids and glycolipids, and was free of other essentially all of the viral phospholipids and glycolipids, and was free of other viral proteins. Dialysis to remove OG resulted in the formation of G protein-viral lipid vesicles having a lipid-G protein ratio similar to that of the intact virions. The vesicles were 250-1,000 A in diameter, with a “fuzzy” external layer also similar to that of intact virions. The vesicles were predominantly unilamellar and sealed, with both phosphatidyl ethanolamine and gangliosides symmetrically distributed in the bilayer. G protein was asymmetrically oriented, with about 80 percent accessible to exogenous protease. Addition of soybean phospholipid to the viral extract before dialysis resulted in vesicles that incorporated viral proteins and lipids quantitatively, but that were markedly decreased in buoyant density. The G neutralized protein-lipid vesicles were effective in eliciting specific anti-G antibodies that neutralized viral infectivity. Competitive radioimmunoassay showed that both reconstituted vesicles and a soluble form of G protein (Gs) were indistinguishable from purified VSV in their antibody binding properties. Addition of G protein-lipid vesicles of BHK-21 cells before, or simultaneously with, infection by VSV inhibited viral infectivity, as measured by two independent techniques (viral RNA production in the presence of actinomycin D and a neutral red assay of cell viability). The total inhibitory activity of G protein in the vesicular form was, however, less than 5 percent of that found for intact virus particles that have been inactivated by ultraviolet light irradiation. Gs was inactive as an inhibitor as determined by the RNA production assay.  相似文献   
7.
Time-dependent changes in regional CNS noradrenaline (NA) concentration, 3H-NA uptake and fluorescence morphology of CNS NA neurons were analysed in the adult rat up to 6 months after intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), and compared with the time-course of changes in brain and spinal cord indolamine neurons. Following a substantial depletion of both amines in all CNS regions (telodiencephalon, brainstem and spinal cord) at 10 days after 150 mug 5,7-DHT, brain NA--but not 5-HT--levels recovered to near-normal values in brainstem and forebrain (35% below the age-matched controls) within 4 months. This was accompanied by a total restoration of the initially decreased capacity of the brain tissue to accumulate 3H-NA in vitro. Within 10 days after 5,7-DHT, there was a disappearance of NA terminals from many telencephalic, diencephalic and lower brain stem nuclei, from the cerebral and cerebellar cortices, and the grey matter of the spinal cord, concomitant with the appearance of numerous distorted, highly fluorescent swellings along the non-terminal axons of the major noradrenergic projection pathways. The recovery of the NA levels was paralleled by a re-appearance of fluorescent fibres, signifying an intense sprouting and regrowth of the drug-lesioned axons, which eventually re-innervated some of the previously denervated telodiencephalic regions. Except for a permanent loss of some surface-near perikarya in group A1 (the main source of the bulbospinal projections) there was no evidence of a retrograde degeneration of noradrenergic cell bodies in the rat CNS. The results are compatible with the idea that 5,7-DHT mainly causes a lesion of NA axons at a distance from the cell bodies, and this is followed by sprouting and regrowth of axons from the lisioned neurites, and formation of new terminal-like fibres in some previously denervated telodiencephalic regions. These findings indicate that chemical axotomy of central NA neurons induced by 5,7-DHT is--in contrast to that induced by 6-hydroxydopamine--followed by extensive axonal regeneration.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号