首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3883篇
  免费   328篇
  国内免费   11篇
  2023年   19篇
  2022年   56篇
  2021年   94篇
  2020年   58篇
  2019年   94篇
  2018年   78篇
  2017年   83篇
  2016年   125篇
  2015年   182篇
  2014年   204篇
  2013年   232篇
  2012年   277篇
  2011年   255篇
  2010年   179篇
  2009年   156篇
  2008年   201篇
  2007年   217篇
  2006年   181篇
  2005年   177篇
  2004年   172篇
  2003年   127篇
  2002年   148篇
  2001年   71篇
  2000年   71篇
  1999年   63篇
  1998年   41篇
  1997年   30篇
  1996年   27篇
  1995年   26篇
  1994年   22篇
  1993年   17篇
  1992年   54篇
  1991年   36篇
  1990年   33篇
  1989年   37篇
  1988年   29篇
  1987年   25篇
  1986年   28篇
  1985年   33篇
  1984年   29篇
  1983年   22篇
  1982年   19篇
  1981年   11篇
  1980年   19篇
  1979年   11篇
  1978年   16篇
  1975年   11篇
  1974年   14篇
  1973年   17篇
  1972年   12篇
排序方式: 共有4222条查询结果,搜索用时 15 毫秒
1.
2.
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.  相似文献   
3.
Somatic embryogenesis and plantlet formation were obtained from 60–75 day old cell cultures of carnation. Callus was generated on MS basal medium supplemented with 2,4-dichchlorophenoxy acetic acid (2,4-D). Removal of 2,4-D during subsequent subculturing of cell suspensions resulted in formation of embroids. These somatic embryos originated from single cells and their early development proceeded normally with clearly defined apical and root meristems. Some embryos developed into plants and were acclimatized to ex vitro conditions.  相似文献   
4.
5.
6.
New phthalimide derivatives were easily prepared through condensation of phthalic anhydride and selected amines with variable yields (70–90%). All compounds (3al) were evaluated against Mycobacterium tuberculosis H37Rv using Alamar Blue susceptibility. The compounds 3c, 3i, and 3l have the minimum inhibitory concentrations (MICs) of 3.9, 7.8, and 5.0 μg/mL, respectively, and could be considered new lead compounds in the treatment of tuberculosis and multi-drug resistant tuberculosis.  相似文献   
7.
8.
Hydrogen exchange kinetic behavior of human erythrocyte glucose transporter protein in vesicles was studied in the absence and in the presence of D-glucose or a well known inhibitor, cytochalasin B. This is to detect a proposed channel of water penetrating into the protein through which the sugar molecule passes and to monitor any conformational changes induced by the substrate or inhibitor. Analyses of the kinetic data revealed several classes of hydrogens which exchange with readily distinguishable rates. Of 660 hydrogens detected per transporter, approximately 30% exchanged with rates generally characterized as those of free amide hydrogens indicating they are interfaced to solvent water. Since the transporter is known to be embedded deep in the hydrophobic area of the membrane with minimum exposure to the outside of the membrane lipid bilayer, a significant portion of these free amide hydrogens must be at the purported channel rather than outside of the membrane. D-Glucose and cytochalasin B affected the exchange kinetics of these presumably channel-associated free amide hydrogens rather differently. D-Glucose reduced the apparent rate constants, but not the total number. Cytochalasin B on the other hand reduced the total number to one-half without significantly changing the apparent rate constants. The remaining 70% of the labeled hydrogens exchanged with much slower rates which vary 10-10,000-fold, indicating that they are internally structured peptide amide and side chain hydrogens. Both D-glucose and cytochalasin B further reduced the rates of these hydrogens, indicating a global stabilization of the protein structure.  相似文献   
9.
10.
Summary Phenylalanine production from E. coli KA 197/pJN6 (plasmid harboring genes for aro F, phe AFBR, AmpR and TcR) was studied under varying nutritional conditions in batch and continuous cultures. In batch culture experiments where growth was deliberately interrupted by limiting concentrations of sulphate and phosphate the phenylalanine production continued from the non-growing cells. However, the depletion of phosphate resulted in an immediate cessation of phenylalanine production but thereafter a low specific rate of phenylalanine formation resumed, while the decrease in specific rate of product formation was less after sulphate depletion. In the chemostat experiments, however, phosphate limitation was the only case where the specific rate of phenylalanine formation remained constant, while at the corresponding time in sulphate and glucose limited chemostats it was declining respectively had ceased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号