首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2000年   3篇
  1998年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1954年   4篇
  1953年   2篇
  1952年   1篇
  1940年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
The extensive series of experiments reported in Lemons et al. [1] show that measureable local tissue temperature fluctuations are observed primarily in the vicinity of the 100-500 micron countercurrent vessels of the microcirculation and thus strongly support the basic hypothesis in the new bioheat equation of Weinbaum and Jiji [2] that these countercurrent microvessels are the principal determinants of local blood-tissue heat transfer. However, the detailed temperature profiles in the vicinity of these vessels indicate that large asymmetries in the local temperature field can result from the significant differences in size between the countercurrent artery and vein. Using the superposition techniques of Baish et al. [9], the paper first presents a solution to the classic problem of an unequal countercurrent heat exchanger with heat loss to the far field. This solution is then used to generalize the Weinbaum-Jiji bioheat equation and the conductivity tensor that appears in this equation to vessels of unequal size. An asymptotic analysis has also been developed to elucidate the relationship between the near field temperature of the artery-vein pair and the local average tissue temperature. This analysis is used to rigorously prove the closure approximation relating the local arterial-venous temperature difference and the mean tissue temperature gradient which had been derived in [2] using a more heuristic approach.  相似文献   
2.
R S Lemons  S J O'Brien  C J Sherr 《Cell》1977,12(1):251-262
Somatic cell hybrids derived from seven independent fusions between mouse X human and hamster X human parental cells were examined for their ability to support the replication of the baboon endogenous type C virus. These hybrids preferentially segregated human chromosomes while retaining rodent chromosomes, as demonstrated by karyotypic and isozyme analysis. A total of 41 primary colonies and 33 secondary subclones were analyzed for viral replication, as well as for the presence of enzyme structural gene markers for 19 of 23 human chromosomes. A syntenic association was seen between the ability of the baboon type C virus to infect and replicate in hybrid cultures and the expression of human malic enzyme-1 (assigned to human chromosome 6). Analysis of 86 highly segregated subclones derived from cells preinfected with baboon type C virus showed that the continued production of baboon type C virus segregated concordantly with the expression of three enzyme genes assigned to human chromosome 6 (malic enzyme-1, phosphoglucomutase-3 and superoxide dismutase-2). Subclones of infected hybrids which lost chromosome 6 and failed to release virus also failed to synthesize the virus-coded major structural protein p30. No syntenic association between baboon virus expression and any of 18 other human chromosomes was observed. These studies define a new gene (designated Bevi) on human chromosome 6 which dominantly controls the replication of baboon type C virus. The data suggest that Bevi may be a preferred integration site for the baboon type C DNA provirus in the human genome.  相似文献   
3.
The microvascular organization and thermal equilibration of the primary and secondary arteries and veins that comprise the bleed off circulation to the muscle fibers from the parent countercurrent supply artery and veins are analyzed. The blood perfusion heat source term in the tissue energy equation is shown to be related to this vascular organization and to undergo a fundamental change in behavior as one proceeds from the more peripheral tissue, where the perfusion term is proportional to the Ta--Tv difference in the parent supply vessels, to the deeper tissue layers where the bleed off vessels themselves form a branching countercurrent system for each muscle tissue cylinder and the venous return temperature can vary between the local tissue temperature and Ta. The consequences of this change in behavior are examined for the Weinbaum-Jiji bioheat equation and a modified expression for the effective conductivity of perfused tissue is derived for countercurrent bleed off exchange.  相似文献   
4.
The accumulation of cystine in cystinotic fibroblasts from free and protein-linked cystine has been investigated. Cystine is not accumulated from cysteine but is readily accumulated from cystine. The accumulation from free cystine does not occur as a result of pinocytosis or from the degradation of a rapidly metabolized protein pool. Further studies of the degradation of disulphide-containing proteins by these cells may aid understanding of the mechanisms of proteolysis.  相似文献   
5.
6.

Background  

In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system.  相似文献   
7.
8.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   
9.
The population explosion and unintended pregnancies resulting in elective abortions continue to impose major public health issues. This calls for a better method of contraception. Immunocontraception has been proposed as a valuable alternative that can fulfill most, if not all, of the properties of an ideal contraceptive. There are several targets that are being explored for contraceptive vaccine development. Leukemia inhibitory factor (LIF), a member of interleukin‐6 family, is required for embryo development and successful blastocyst implantation in several mammalian species. The present study was conducted to examine if LIF can be a target for the development of a birth control vaccine. Three sequences from LIF and two sequences from LIF‐receptor (LIF‐R) that span the regions involved in ligand‐receptor binding were delineated, and peptides were synthesized based upon these sequences. Antibodies raised against these five peptides reduced LIF bioactivity in an in vitro culture assay using BA/F3 mLIF‐R‐mpg130 cells. Vaccines were prepared by conjugating these peptides to various carrier proteins. Immunization of female mice with these peptide vaccines induced a long‐lasting, circulating as well as local antibody response in various parts of the genital tract, and resulted in a significant (P ≤ 0.05) inhibition in fertility in all the three trials; the LIF‐R peptide vaccines proved to be a better vaccine target. The data indicate that LIF/LIF‐R is an excellent target for the development of a birth control vaccine. This is the first study, to our knowledge, that examined LIF/LIF‐R as a target for immunocontraception. The findings of this study can be easily translated to humans since LIF/LIF‐R is also important for implantation and pregnancy in women. Mol. Reprod. Dev. 79:97–106, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
10.
Insulin-degrading enzyme (IDE) is a cytosolic proteinase involved in the cellular processing of insulin. Using somatic cell hybrid analysis and in situ chromosomal hybridization, we have localized the gene encoding IDE to human chromosome 10, bands q23----q25. The murine Ide gene was previously mapped to Chromosome 19; together, these results suggest that the IDE gene is a member of a conserved syntenic group on human chromosome 10, bands q23----q25 and mouse Chromosome 19.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号