首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   13篇
  353篇
  2021年   6篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   20篇
  2011年   13篇
  2010年   7篇
  2009年   17篇
  2008年   12篇
  2007年   14篇
  2006年   5篇
  2005年   18篇
  2004年   13篇
  2003年   6篇
  2002年   8篇
  2001年   10篇
  2000年   12篇
  1999年   15篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1966年   2篇
  1945年   2篇
  1927年   2篇
  1926年   3篇
  1924年   4篇
  1920年   3篇
  1916年   2篇
  1914年   3篇
排序方式: 共有353条查询结果,搜索用时 15 毫秒
1.
    
  相似文献   
2.
Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.  相似文献   
3.
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.Oxygen is essential for aerobic respiration, but reactive byproducts of oxygen metabolism, such as the superoxide anion, can damage cellular molecules, including proteins, DNA, and lipids (13). SOD1s (copper- and zinc-containing superoxide dismutases) provide the primary defense against superoxide damage by catalytically removing it through a disproportionation reaction (4). This reaction involves redox cycling at the copper active site (5). SOD1s require several post-translational modifications to form an active molecule. Copper and zinc are bound by the enzyme, and an intramolecular disulfide bond is formed between two conserved cysteine residues. Although the zinc ion and disulfide bond are not directly involved in the disproportionation reaction, these modifications are required for proper stability and formation of the active site (610). The presence of an intramolecular disulfide bond is intriguing, given the fact that the cytosol favors reduced thiols.The activity of SOD1s in vivo is largely controlled through the aforementioned post-translational modifications. Most of what is currently known about activation of SOD1 in vivo has emerged through studies of the bakers'' yeast Saccharomyces cerevisiae SOD1. Here insertion of the catalytic copper requires the action of the copper chaperone for SOD3 (CCS) (11). CCS physically interacts with SOD1 to deliver the copper ion and catalyze the disulfide bond formation in an oxygen-dependent manner (1215). In fact, S. cerevisiae SOD1 (ySOD1) is completely dependent on CCS for insertion of the catalytic copper and oxidation of the disulfide bond (11, 15, 16).Although ySOD1 is dependent on CCS for activity, other eukaryotic SOD1s are not. Mouse and human SOD1 (hSOD1), when expressed in CCS−/− mouse fibroblasts and in ccs1Δ yeast, still retain some SOD1 activity (1719). Moreover, the genome for the nematode Caenorhabditis elegans does not contain a CCS-like gene, yet harbors several Cu,Zn-SODs. Previous studies with C. elegans SOD-1 (wSOD-1) have shown that this SOD is activated completely independently of CCS (20). Together, these studies present a strong case for a second SOD1 activation mechanism independent of CCS.There must be inherent differences in SOD1 sequences that dictate whether the enzyme uses CCS or the CCS-independent pathway or both. Through targeted mutagenesis, sequences near the C terminus have been previously identified as being important (19). Yeast SOD1 contains dual prolines at positions 142 and 144, which when mutated in combination allow for CCS-independent activation. Conversely, hSOD1 and wSOD-1 contain non-proline residues at these positions, and if dual prolines are introduced, then CSS-independent activation is blocked (19, 20). How this pair of prolines influences SOD1 activation is not understood.It is interesting that nature has developed two activation mechanisms for such a key enzyme in oxidative stress protection, and these are not likely to be redundant. It was previously predicted that the two pathways draw upon distinct sources of copper (19), since the addition of the catalytic copper ion is limiting for enzyme activation. However, since disulfide oxidation is also limiting for enzyme activity, it is possible that the two pathways diverge at this level. In the current study, we investigate the requirements and regulation of the CCS-dependent and -independent SOD1 activation pathways. Our results strongly indicate that the two pathways do not diverge at the level of upstream copper transporter sources or the kinetics of copper incorporation into SOD1 but rather at the level of disulfide bond formation. Copper is required for CCS-mediated disulfide bond oxidation in yeast SOD1, whereas SOD1s that can be activated without CCS show no such requirement for copper in disulfide oxidation. Moreover, oxygen is required for enzyme activation through CCS, but the CCS-independent pathway is able to bypass the need for molecular oxygen. This allows for significant SOD1 activity to be found at a variety of oxygen concentrations by utilizing two activation pathways.  相似文献   
4.
5.
6.
First-trimester human placental villi were cultured on 3H-leucine-labeled extracellular matrices isolated from the PF HR9 and PYS-2 cell lines. Both cell lines produced an extracellular matrix that contained basement membrane-specific macromolecules, including type IV collagen, laminin and proteoglycan. Both matrices promoted outgrowth of cells from the villi which, according to morphological criteria, were identified as cytotrophoblastic cells. As the cells migrated from the attachment site, they caused a marked focal dissolution of the matrix which was accompanied by a concomitant release of 3H-labeled material into the media. Approximately half of this material chromatographed near the inclusion volume of Sephadex G-50, indicating that the labeled matrix components had been degraded. This phenomenon was dependent on the age of the placenta. Second-trimester placental villi also adhered to the matrix, but no areas of dissolution were formed and no significant amounts of radioactivity were released into the medium. These results suggest that culture of first-trimester human placental villi on extracellular matrices may be useful for the study of some of the early embryonic events leading to human implantation, during which the trophoblastic cells erode the uterine epithelium.  相似文献   
7.
8.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder, the primary features of which include obesity, retinal dystrophy, polydactyly, hypogenitalism, learning difficulties, and renal malformations. Conventional linkage and positional cloning have led to the mapping of six BBS loci in the human genome, four of which (BBS1, BBS2, BBS4, and BBS6) have been cloned. Despite these advances, the protein sequences of the known BBS genes have provided little or no insight into their function. To delineate functionally important regions in BBS2, we performed phylogenetic and genomic studies in which we used the human and zebrafish BBS2 peptide sequences to search dbEST and the translation of the draft human genome. We identified two novel genes that we initially named "BBS2L1" and "BBS2L2" and that exhibit modest similarity with two discrete, overlapping regions of BBS2. In the present study, we demonstrate that BBS2L1 mutations cause BBS, thereby defining a novel locus for this syndrome, BBS7, whereas BBS2L2 has been shown independently to be BBS1. The motif-based identification of a novel BBS locus has enabled us to define a potential functional domain that is present in three of the five known BBS proteins and, therefore, is likely to be important in the pathogenesis of this complex syndrome.  相似文献   
9.
Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization.  相似文献   
10.
Nicotiana tabacum (tobacco) is an allotetraploid derived from ancestors of the modern diploids, N. sylvestris and N. tomentosiformis. We identified and characterized two distinct families of 5S ribosomal DNA (rDNA) in N. tabacum; one family had an average 431 bp unit length and the other a 646 bp unit length. In the diploid species, N. sylvestris and N. tomentosiformis, the 5S rDNA unit lengths are 431 bp and 644 bp respectively. The non-coding spacer sequence of the short unit in tobacco had high sequence homology to the spacer of N. sylvestris5S rDNA, while the longer spacer of tobacco had high homology with the 5S spacer of N. tomentosiformis. This suggests that the two 5S families in tobacco have their origin in the diploid ancestors. The longer spacer sequence had a GC rich sub-region (called the T-genome sub-region) that was absent in the short spacer. Pulsed field gel analysis and fluorescent in situ hybridization to tobacco metaphase chromosomes showed that the two families of 5S rDNA units are spatially separate at two chromosomal loci, on chromosomes S8 (short family) and T8 (long family). The repeat copy number at each chromosomal locus showed heterogeneity between different tobacco cultivars, with a tendency for a decrease in the copy number of one family to be compensated by an increase in the copy number of the second family. Sequence analysis reveals there is as much diversity in 5S family units within the diploid species as there is within the T and S-genome 5S family units respectively, suggesting 5S diversification within each family had occurred before tobacco speciation. There is no evidence of interlocus homogenization of the two 5S families in tobacco. This is therefore substantially different to 18-26S rDNA where interlocus gene conversion has substantially influenced most sequences of S and T genome origin; possible reasons are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号