首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavage-religation equilibrium, increasing single-strand nicks and protein-DNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.  相似文献   
2.
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis.  相似文献   
3.

A metabolic heat-based model was used for estimating the growth of Kluyveromyces marxianus, and the modified Luedeking-Piret kinetic model was used for describing the inulinase production kinetics. For the first time, a relationship was developed to relate inulinase production kinetics directly to metabolic heat generated, which corroborated well with the experimental data (with R 2 values of above 0.9). It also demonstrated the predominantly growth-associated nature of the inulinase production with Luedeking-Piret parameters α and β, having values of 0.75 and 0.033, respectively, in the exponential feeding experiment. MATLAB was used for simulating the inulinase production kinetics which demonstrated the model’s utility in performing real-time prediction of inulinase concentration with metabolic heat data as input. To validate the model predictions, a biocalorimetric (Bio RC1e) experiment for inulinase production by K. marxianus was performed. The inulinase concentration (IU/mL) values acquired from the model in were validated with the experimental values and the metabolic heat data. This modeling approach enabled the optimization, monitoring, and control of inulinase production process using the real-time biocalorimetric (Bio RC1e) data. Gas chromatography and mass spectrometry analysis were carried out to study the overflow metabolism taking place in K. marxianus inulinase production.

  相似文献   
4.
Bioprocess and Biosystems Engineering - Air flow rate and agitation speed for inulinase production by Kluyveromyces marxianus were optimized based on metabolic heat release profiles. Shear stress...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号