首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有34条查询结果,搜索用时 778 毫秒
1.
Abstract: The effects of GABA on the kinetics of tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the convulsant site of GABAA receptors were studied in membrane suspensions from the cerebral cortex of newborn (1-day-old) and adult (90-day-old) rats. TBPS dissociation was biphasic in neonates and adults, indicating that more than one interconvertible state of [35S]TBPS binding sites may be present in the cerebral cortex. In the absence of GABA, the fast ( t 1/2, 11 min) and slow ( t 1/2, 77 min) components of TBPS dissociation in newborn rats were approximately fourfold slower than in adults. The acceleration of the dissociation rates caused by 2 µ M GABA, however, was more robust in neonates than in adults (six- to ninefold vs. twofold increase, respectively). Moreover, the dissociation rates of TBPS in membranes preincubated with 2 µ M GABA (dissociation started by adding 40 µ M picrotoxin) were two- to fourfold slower than in membranes preincubated without GABA (dissociation started by adding 40 µ M picrotoxin plus 2 µ M GABA). Taken together, these results suggest that (1) the closed state of GABAA receptors is associated with a more effective steric barrier for the binding of TBPS in neonates compared with adults, (2) GABA produces a larger acceleration of the binding kinetics of TBPS in neonates than in adults, and (3) long incubations with GABA may cause receptor desensitization, which in turn slows down the dissociation rates of TBPS.  相似文献   
2.
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.  相似文献   
3.
A rapid microwave method is described for staining copper in liver. This procedure was compared with a conventional method for copper. To this end, liver sections obtained from patients affected by several liver diseases associated with copper overload, were stained both with the standard rubeanic acid method for copper and with our modification of the same method, incorporating microwave treatment. Liver sections from a normal human newborn were used as a positive control. In Wilson's disease in the cirrhotic stage, copper was detected by the conventional method solely in periportal cells; following the microwave treatment, we were able to demonstrate copper in the whole lobule. In alcoholic cirrhosis, rubeanic acid stained copper only in a few periportal cells, while, by our modified method, copper was detected in almost all periportal hepatocytes. In chronic biliary tract disease, and in the newborn liver, copper was demonstrated in a few periportal cells by both the two histochemical procedures. In conclusion, although copper was detected by both procedures, a different degree of positivity was sometimes observed by using microwaves. Moreover, the microwave-treated sections showed more contrast and less artifacts. From a practical point of view, for the simplicity of employment and, above all, for its quickness (10 min), we suggest the use of our method in all conditions where copper overload is suspected.  相似文献   
4.
The epidermal growth factor receptor (EGFR) is widely distributed in several organs in which, following interaction with its ligand, it can affect development and differentiation. The aim of this study was to define the distribution of EGFR in human parotid gland by means of a post-embedding immunogold staining method. Normal human parotid glands obtained at surgery were routinely prepared for electron microscopy. Semithin and ultrathin sections were treated for immunocytochemistry using a mouse monoclonal antibody specific for EGFR and a goat anti-mouse gold conjugated secondary antiserum. At the light microscope level, EGFR reactivity was revealed by a specific dark staining in both acinar and ductal cells. At the electron microscope level, EGFR was strongly stained in the cytoplasmic compartments and occasionally labeled on cell surfaces. In acinar cells, it appeared to be associated with small vesicles of uncertain nature that were scattered among the secretory granules. EGFR-positive vesicles were also observed in the ductal cells, with the most intense labeling being localized in striated ducts. Since cytoplasmic vesicles were previously found to be EGF-positive, these results may be due to the presence of the EGF-EGFR complex that is internalized after binding of EGF to the surface EGFR.  相似文献   
5.
6.
7.
8.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   
9.
Methods for parameter estimation that are robust to experimental uncertainties and to stochastic and biological noise and that require a minimum of a priori input knowledge are of key importance in computational systems biology. The new method presented in this paper aims to ensure an inference model that deduces the rate constants of a system of biochemical reactions from experimentally measured time courses of reactants. This new method was applied to some challenging parameter estimation problems of nonlinear dynamic biological systems and was tested both on synthetic and real data. The synthetic case studies are the 12-state model of the SERCA pump and a model of a genetic network containing feedback loops of interaction between regulator and effector genes. The real case studies consist of a model of the reaction between the inhibitor κB kinase enzyme and its substrate in the signal transduction pathway of NF-κB, and a stiff model of the fermentation pathway of Lactococcus lactis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号