首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  2019年   3篇
  2017年   1篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1997年   3篇
  1995年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
In acid volcanic soils, plant roots are thought to be injured by acidity (low pH) and/or solubilized aluminium (Al) ions. An attempt was made to separate the effects of low pH from those of Al on the elongation and viability of alfalfa (Medicago sativa L.) radicles in water culture. Root elongation was irreversively curtailed by 20 hours treatment at pH 4.0 without Al or 20 mmol m-3 Al at pH 5.0. Viability of surface cells of root tips was detected as a degrading activity of fluorescein diacetate (FDA) by cellular esterases and subsequent accumulation of derived fluorescein within cells. Large numbers of the surface cells lost their viability after four hours exposure at the low pH. In contrast, surface cells maintained both FDA degrading activity and ability to accumulate fluorescein 20 h after initial exposure to the Al solution (20 mmol Al m-3, pH 5.0). These results suggest that there are some significant differences in the mechanisms of phytotoxicity to alfalfa root between the two stress factors.  相似文献   
2.
In the absence of other external stimuli the motile, unicellular freshwater flagellate Euglena gracilis normally swims upward in the water column (negative gravitaxis). This behavior is most likely triggered by active physiological orientation mechanisms. Recently it was found that negative gravitaxis often inverts to a positive one upon high light exposure. This response is not mediated by the photoreceptor (the paraxonemal body - PAB), because PAB-free mutants do also show this response after high radiation. It is very likely that the phenomenon is triggered by reactive oxygen species, because in the absence of oxygen no gravitaxis sign change was observed. Also increased salinity inverses the sign of gravitaxis, leading to the assumption that environmental stressors induce the formation of reactive oxygen species, serving as signal molecules.  相似文献   
3.
Euglena gracilis, a unicellular freshwater protist exhibits different photomovement responses, such as phototaxis (oriented movement toward or away from the light source) and photophobic (abrupt turn in response to a rapid increase [step-up] or decrease [step-down] in the light fluence rate) responses. Photoactivated adenylyl cyclase (PAC) has been isolated from whole-cell preparations and identified by RNA interference (RNAi) to be the photoreceptor for step-up photophobic responses but not for step-down photophobic responses (M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, C. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe [2002] Nature 415: 1047-1051). The present study shows that knockdown of PAC by RNAi also effectively suppresses both positive and negative phototaxis, indicating for the first time that PAC or a PAC homolog is also the photoreceptor for photoorientation of wild-type E. gracilis. Recovery from RNAi occurred earlier for step-up photophobic responses than for positive and negative phototaxis. In addition, we investigated several phototaxis mutant strains of E. gracilis with different cytological features regarding the stigma and paraxonemal body (PAB; believed to be the location for the phototaxis photoreceptor) as well as Astasia longa, a close relative of E. gracilis. All of the E. gracilis mutant strains had PAC mRNAs, whereas in A. longa, a different but similar mRNA was found and designated AlPAC. Consistently, all of these strains showed no phototaxis but performed step-up photophobic responses, which were suppressed by RNAi of the PAC mRNA. The fact that some of these strains possess a cytologically altered or no PAB demonstrates that at least in these strains, the PAC photoreceptor responsible for the step-up photophobic responses is not located in the PAB.  相似文献   
4.
The unicellular freshwater flagellate Euglena gracilis regulates its position in the water column by means of phototactic and gravitactic behavior. Recent experiments have revealed that the cells switch between negative and positive gravitaxis depending upon environmental stimuli such as solar radiation. In this study, the effect of increased salinity on gravitaxis in Euglena gracilis was investigated. In some experiments it was found that salt concentrations up to 5 gL-1 (in some experiments 10 gL-1) increased the motility, velocity and precision of negative gravitactic orientation. Higher salt concentrations decreased all these parameters. At concentrations of about 15 gL-1, cells which did not become immobile, switched from negative to positive gravitaxis. Positive gravitaxis persisted for several hours or even days when the cells were transferred back to standard culture medium. Most of the cells in cultures exposed to salt concentrations above 20 gL-1 lost their motility (partial formation of palmella stages) but recovered when transferred back to standard medium or de-ionised water. Post recovery, the cells showed pronounced positive gravitaxis. Additional investigations on the pigmentation, revealed that the cells showed a complete loss of a carotenoid shoulder in the spectrum, which reappeared when the cells were brought back to standard medium.  相似文献   
5.
Euglena gracilis, a unicellular, photosynthetic flagellate, orients itself by means of gravi- and phototaxis to reach and stay in regions optimal for survival and growth. An improved version of the slow rotating centrifuge microscope, NIZEMI, was used to test wild type and mutant strains for their responses to hypergravity. Wild type cells could actively move against the acceleration vector up to 8.5 gn and were centrifuged down at higher rates. Even at 10.5 gn, the highest value tested, cells were still negative gravitactically oriented as shown by video images. In contrast, all mutant strains as well as Astasia longa, a close relative of Euglena, could move against the acceleration vector under all conditions tested. With increasing accelerations the mean orientation of the populations shifted according to a vectorial addition of gravity and acceleration. The r-value, a statistical measure of the orientation of a population, increased with moderately increased acceleration rates and decreased at higher values. While wild type Euglena and two of the three mutant strains tested were exclusively negative gravitactically, in the third strain as well as in Astasia longa half of the population reacted negative gravitactically and the other half positive gravitactically. This variation of the wild type behavior was observed at moderate acceleration rates. At high accelerations the cells became exclusively positive gravitactic. The obtained results are discussed on the basis of the current model explaining gravitaxis.  相似文献   
6.
Gravitaxis in unicellular microorganisms like Euglena gracilis has been known for more than 100 years. The current model explains this phenomenon on the basis of a specific density difference between cell body and surrounding medium. In order to test the feasibility of the current model in terms of physical considerations the specific density of different Euglena gracilis cultures was determined. Depending on the culture conditions the specific density was in a range between 1.046 g mL-1 and 1.054 g mL-1. Size and gravitaxis measurements were performed in parallel, which allowed to relate the force applied to the lower membrane to the kinetic properties of gravitactic reorientation. A linear relationship between force and gravitaxis kinetics was found. A comparison between estimated activation energy of the proposed stretch-sensitive ion channels and energy supplied by the displacement of the lower membrane by the sedimentation of the cell body revealed that a focusing, an amplification and/or an integration period over time must be involved in the gravitactic signal transduction chain. Analysis of stimulus-response curves revealed an integration period of about 5 seconds before a gravitactic reorientation starts. The kinetics of gravitaxis at 1 x gn, and 0.12 x gn, was found to be similar. A hypothesis is presented that explains this finding on the basis of a combination of an integration period and an all-or-none reaction during gravitactic reorientation.  相似文献   
7.
Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavioral reactions. One pronounced reaction is the orientation with respect to gravity. In synchronized cultures with no cell growth a distinct circadian rhythm of negative gravitactic orientation could be observed. The main maximum of sensitivity was detected 5 h after the beginning of the subjective day, the main minimum 5 h before the beginning of the subjective day. Transferring synchronized cultures to continuous light resulted in an almost instantaneous loss of rhythmicity. In contrast, after transfer to permanent darkness cells exhibited a circadian rhythm with a progressive shortening of the period for more than 5 days. These findings are in contrast to the circadian rhythm of phototaxis in Euglena, where a free-running period of 24 h was observed. Parallel measurements of negative gravitactic orientation, velocity, cell shape as well as cAMP concentration in synchronized cultures revealed a circadian rhythm of all reactions. The results are discussed with regard to the possible role of cell shape and cAMP in gravitactic orientation.  相似文献   
8.
The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1–CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.  相似文献   
9.
To meet the todays needs for the protection of the environment from pollution through cumulative poisonings or biohazards ecotoxicology uses biotests, to determine effects of chemicals and sewage waters to ecosystems. ECOTOX is a biotest system that allows both the estimation of risks arising from certain substances or substance mixtures as well as the on-line monitoring of waste waters and aquatic ecosystems. Euglena gracilis, the employed organism for freshwater measurements, found to be highly sensitive to external factors, provides several physiological endpoints, well fitted for toxicity hazard assessment in water management, which can be characterized by the ECOTOX program.  相似文献   
10.
The unicellular freshwater flagellate Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitaxis. Previous experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism in which changes of the internal calcium concentration and the membrane potential play an important role. In a recent parabolic flight experiment on board an aircraft (ESA 29th parabolic flight campaign), changes of graviorientation, membrane potential and the cytosolic calcium concentration upon changes of the acceleration (between 1 x g(n), 1.8 x g(n), microgravity) were monitored by image analysis and photometric methods using Oxonol VI (membrane potential) and Calcium Crimson (cytosolic calcium concentration). The parabolic flight maneuvers performed by the aircraft resulted in transient phases of 1.8 x g(n) (about 20 s), microgravity (about 22 s) followed by 1.8 x g(n) (about 20 s). A transient increase in the intracellular calcium concentration was detected from lower to higher accelerations (1 x g(n) to 1.8 x g(n) or microgravity to 1.8 x g(n)). Oxonol VI-labeled cells showed a signal, which indicates a depolarization during the transition from 1 x g(n) to 1.8 x g(n), a weak repolarization in microgravity followed by a rapid repolarization in the subsequent 1 x g(n) phase. The results show good coincidence with observations of recent terrestrial and space experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号