首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   16篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
Adenosylcobalamin-dependent methylmalonyl-CoA mutase from Propionibacterium shermanii contains no intramolecular disulphide bridges, but two of the six thiol groups in the heterodimer are only revealed after reduction of the denatured enzyme with dithiothreitol. The available evidence suggests that they are present in disulphide linkages to unknown thiols of low Mr. The two specifically masked cysteine residues are Cys-535 in the alpha-subunit and Cys-517 in the beta-subunit, which occupy exactly homologous positions in each chain.  相似文献   
2.
3.
Pinocytosis was measured in monkey aortic smooth muscle cells (SMC), bovine aortic endothelial cells, and Swiss 3T3 cells in culture as cellular uptake of [U-(14)C]sucrose and horseradish peroxidase (HRP) from the tissue culture medium. Monkey arterial SMC and Swiss 3T3 cells were maintained in a quiescent state of growth at low cells density in medium containing 5 percent monkey plasma-derived serum (PDS). Replacement of PDS with 5 percent monkey whole blood serum (WBS) from the same donor, or addition to PDS of partially purified platelet-derived growth factor(s) (PF), resulted in a marked stimulation of pinocytosis as well as of cellular proliferation. In SMC, enhancement of the rate of pinocytosis occurred 4-6 h after exposure to WBS or PF, and the rate was up to twofold higher than the rate in medium containing PDS. In contrast, [(3)H]thymidine uptake by SMC did not increase until 12-16 h after exposure to PF. In endothelial cells the presence of PF or WBS did not enhance either the rate of pinocytosis or the rate of proliferation over that in PDS. Thus, endothelial cells did not become quiescent at subconfluent densities in PDS but maintained rates of proliferation and pinocytosis that were equivalent to those in WBS. By autoradiography, the fraction of labeled nuclei in SMC cultures 24 h after change of medium increased from 0.061 +/- 0.004 in quiescent cultures to 0.313 +/- 0.028 after exposure to WBS or PF. In contrast, labeling indices of endothelial cells were similar for cultures grown in PDS, WBS, or PF at any single time point after change of medium. These findings suggest that the rate of pinocytosis maybe be coupled in some fashion to growth regulation, which may be mediated in part by specific growth factors, such as that derived from the thrombocyte.  相似文献   
4.
N Dhillon  P F Leadlay 《FEBS letters》1990,262(2):189-193
Re-analysis of the primary structure of the ribosomal RNA N-methyltransferase that confers self-resistance on the erythromycin-producing bacterium Saccharopolyspora erythraea has confirmed the presence of a C-terminal domain containing extensive repeat sequences. Nine tandem repeats can be discerned, with a decapeptide consensus sequence GGRx(H/R)GDRRT, although no single residue is wholly invariant. This highly polar, potentially flexible domain, which is predicted to adopt either a random coil or a structure with beta turns, has a counterpart in the erythromycin methyltransferase of an erythromycin-producing species of Arthrobacter. It also significantly resembles a portion of the C-terminal region of the eukaryotic protein nucleolin, which is unusually rich in dimethylarginine and glycine, and which is also predicted to behave as a random coil in solution. This resemblance, despite the very different roles of these proteins in ribosome biogenesis, strengthens the idea that in both rRNA methyltransferases and nucleolin these C-terminal sequences might contribute to rRNA binding.  相似文献   
5.
The ery A region of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea has previously been shown to contain three large open reading frames (ORFs) that encode the components of 6-deoxyerythronolide B synthase (DEBS). Polyclonal antibodies were raised against recombinant proteins obtained by overexpression of 3' regions of the ORF2 and ORF3 genes. In Western blotting experiments, each antiserum reacted strongly with a different high molecular weight protein in extracts of erythromycin-producing S. erythraea cells. These putative DEBS 2 and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the translation start sites predicted from the DNA sequences of ORFs 2 and 3. A third high molecular weight protein co-purified with DEBS 2 and DEBS 3 and had an N-terminal sequence that matched a protein sequence translated from the DNA sequence some 155 base pairs upstream from the previously proposed start codon of ORF1.  相似文献   
6.
The glycosyltransferases OleG1 and OleG2 and the cytochrome P450 oxidase OleP from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus have been expressed, either separately or from artificial gene cassettes, in strains of Saccharopolyspora erythraea blocked in erythromycin biosynthesis, to investigate their potential for the production of diverse novel macrolides from erythronolide precursors. OleP was found to oxidize 6-deoxyerythronolide B, but not erythronolide B. However, OleP did oxidize derivatives of erythronolide B in which a neutral sugar is attached at C-3. The oxidized products 3-O-mycarosyl-8a-hydroxyerythronolide B, 3-O-mycarosyl-8,8a-epoxyerythronolide B, 6-deoxy-8-hydroxyerythronolide B and the olefin 6-deoxy-8,8a-dehydroerythronolide B were all isolated and their structures determined. When oleP and the mycarosyltransferase eryBV were co-expressed in a gene cassette, 3-O-mycarosyl-6-deoxy-8,8a-dihydroxyerythronolide B was directly obtained. When oleG2 was co-expressed in a gene cassette together with oleP, 6-deoxyerythronolide B was converted into a mixture of 3-O-rhamnosyl-6-deoxy-8,8a-dehydroerythronolide B and 3-O-rhamnosyl-6-deoxy-8,8a-dihydroxyerythronolide B, confirming previous reports that OleG2 can transfer rhamnose, and confirming that oxidation by OleP and attachment of the neutral sugar to the aglycone can occur in either order. Similarly, four different 3-O-mycarosylerythronolides were found to be substrates for the desosaminyltransferase OleG1. These results provide additional insight into the nature of the intermediates in OleP-mediated oxidation, and suggest that oleandomycin biosynthesis might follow parallel pathways in which epoxidation either precedes or follows attachment of the neutral sugar.  相似文献   
7.
In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787–1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.  相似文献   
8.
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix(ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine.  相似文献   
9.

Background  

Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence.  相似文献   
10.
The thioesterase FlK from the fluoroacetate-producing Streptomyces cattleya catalyzes the hydrolysis of fluoroacetyl-coenzyme A. This provides an effective self-defense mechanism, preventing any fluoroacetyl-coenzyme A formed from being further metabolized to 4-hydroxy-trans-aconitate, a lethal inhibitor of the tricarboxylic acid cycle. Remarkably, FlK does not accept acetyl-coenzyme A as a substrate. Crystal structure analysis shows that FlK forms a dimer, in which each subunit adopts a hot dog fold as observed for type II thioesterases. Unlike other type II thioesterases, which invariably utilize either an aspartate or a glutamate as catalytic base, we show by site-directed mutagenesis and crystallography that FlK employs a catalytic triad composed of Thr42, His76, and a water molecule, analogous to the Ser/Cys-His-acid triad of type I thioesterases. Structural comparison of FlK complexed with various substrate analogues suggests that the interaction between the fluorine of the substrate and the side chain of Arg120 located opposite to the catalytic triad is essential for correct coordination of the substrate at the active site and therefore accounts for the substrate specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号