首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
2.
  1. Ecologically meaningful seed germination experiments are constrained by access to seeds and relevant environments for testing at the same time. This is particularly the case when research is carried out far from the native area of the studied species.
  2. Here, we demonstrate an alternative—the use of glasshouses in botanic gardens as simulated‐natural habitats to extend the ecological interpretation of germination studies. Our focal taxa were banana crop wild relatives (Musa acuminata subsp. burmannica, Musa acuminata subsp. siamea, and Musa balbisiana), native to tropical and subtropical South‐East Asia. Tests were carried out in Belgium, where we performed germination tests in relation to foliage‐shading/exposure to solar radiation and seed burial depth, as well as seed survival and dormancy release in the soil. We calibrated the interpretation of these studies by also conducting an experiment in a seminatural habitat in a species native range (M. balbisiana—Los Baños, the Philippines), where we tested germination responses to exposure to sun/shade. Using temperature data loggers, we determined temperature dynamics suitable for germination in both these settings.
  3. In these seminatural and simulated‐natural habitats, seeds germinated in response to exposure to direct solar radiation. Seed burial depth had a significant but marginal effect by comparison, even when seeds were buried to 7 cm in the soil. Temperatures at sun‐exposed compared with shaded environments differed by only a few degrees Celsius. Maximum temperature of the period prior to germination was the most significant contributor to germination responses and germination increased linearly above a threshold of 23℃ to the maximum temperature in the soil (in simulated‐natural habitats) of 35℃.
  4. Glasshouses can provide useful environments to aid interpretation of seed germination responses to environmental niches.
  相似文献   
3.

Background

The muscle Ras (MRAS) gene resides on chromosome 3q22.3 and encodes a member of the membrane-associated Ras small GTPase proteins, which function as signal transducers in multiple processes including cell growth and differentiation. Its role in cardiovascular disease is not fully understood yet. In a preliminary study in heterozygous familial hypercholesterolaemia, we identified a locus linking the early onset of coronary artery disease (CAD) to chromosome 3q.22 and elected to sequence the MRAS gene using the MegaBACE DNA analysis system. In the present study, we investigated the association of seven single-nucleotide polymorphisms (SNPs) at this locus with CAD and its dyslipidaemia-related risk traits in 4,650 Saudi angiographed individuals using TaqMan assays by the Applied Biosystems real-time Prism 7900HT Sequence Detection System.

Results

Among the studied SNPs, rs6782181 (p = 0.017) and rs9818870T (p = 0.009) were associated with CAD following adjustment for sex, age and other confounding risk factors. The rs6782181_GG also conferred risk for obesity (1,764 cases vs. 2,586 controls) [1.16(1.03–1.30); p = 0.017], hypercholesterolaemia (1,686 vs. 2,744) [1.23(1.02–1.47); p = 0.019], hypertriglyceridaemia (1,155 vs. 3,496) [1.29(1.01–1.45); p = 0.043] and low high-density lipoprotein-cholesterol (lHDL-chol) levels (1,935 vs. 2,401) [1.15(1.02–1.30); p = 0.023] after adjustment. Additionally, rs253662_(CT+TT) [1.16(1.01–1.32); p = 0.030] was associated with lHDL-chol levels. Interestingly, rs253662 (p = 0.014) and rs6782181 (p = 0.019) were protective against acquiring high low-density lipoprotein-cholesterol (hLDL-chol) levels (p = 0.014), while rs1720819 showed similar effects against CAD (p < 0.0001). More importantly, a 7-mer haplotype, ACCTGAC (χ2 = 7.66; p = 0.0056), constructed from the studied SNPs, its 6-mer derivative CCTGAC (χ2 = 6.90; p = 0.0086) and several other shorter derivatives conferred risk for obesity. hLDL-chol was weakly linked to CTAA (χ2 = 3.79; p = 0.052) and CCT (χ2 = 4.32; p = 0.038), while several other haplotypes were protective against both obesity and hLDL-chol level.

Conclusion

Our results demonstrate that the genomic locus for the MRAS gene confers risk for CAD, obesity and dyslipidaemia and point to the possible involvement of other genes or regulatory elements at this locus, rather than changes in the M-Ras protein function, in these events.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号