首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2007年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

With the increasing demand for seaweed resources worldwide, management must ensure that the harvest of wild seaweed stocks is sustainable. We evaluate the impact of over 25 years of commercial harvesting of Ascophyllum nodosum in eastern Canada by comparing the biomass and height of the seaweed in the late 1990s to the late 2010s over a broad spatial scale spanning the provinces of Nova Scotia and New Brunswick. There has been no significant decrease in the biomass of A. nodosum in either province, and biomass has increased in some regions of New Brunswick during that period. The average height of A. nodosum has decreased by 7.8 cm in Nova Scotia while it increased by 13.8 cm in New Brunswick. Biomass of A. nodosum in unharvested sectors was 7% higher than that in harvested sectors while height of A. nodosum in unharvested sectors in New Brunswick is similar to the values observed in harvested sectors. Over the same period, water temperature has increased in both provinces and, in recent years, has at times exceeded the optimal growing temperature for A. nodosum within bays in Nova Scotia. We conclude that the current management and harvest of A. nodosum in eastern Canada are sustainable and maintain the biomass and height of A. nodosum beds but that control sites are necessary to offer adequate comparisons as environmental conditions are changing.

  相似文献   
2.
We show that inclusion of population characteristics in coupled advection-diffusion and fertilization-kinetics models results in higher fertilization rates than those previously reported in theoretical studies. We incorporate parameters related to both individuals and populations by running simulations over a large spatial scale and incorporating sperm contribution from multiple males. We compare predictions for three subpopulations of the sea urchin Strongylocentrotus droebachiensis (those occupying kelp beds, barrens, and grazing fronts) to observations from small-scale experiments, and estimate effects of population size and current velocity in each subpopulation. Model outputs suggest that fertilization rates are low in kelp beds, intermediate in barrens, and high in grazing fronts. In all populations, increasing current velocity has a negative effect on the relationship between fertilization rate and downstream distance of gametes after release, but no effect on the relationship between fertilization rate and elapsed time since gamete release. Our model output was most sensitive to changes in the number of spawning males and the sperm release rate, suggesting that spawning synchrony and high gonadic index could greatly increase the fertilization success in sea urchins.  相似文献   
3.
Linking dispersal and range expansion of invasive species has long challenged theoretical and quantitative ecologists. Subtle differences in dispersal can yield large differences in geographic spread, with speeds ranging from constant to rapidly increasing. We developed a stage-structured integrodifference equation (IDE) model of the California sea otter range expansion that occurred between 1914 and 1986. The non-spatial model, a linear matrix population model, was coupled to a suite of candidate dispersal kernels to form stage-structured IDEs. Demographic and dispersal parameters were estimated independent of range expansion data. Using a single dispersal parameter, alpha, we examined how well these stage-structured IDEs related small scale demographic and dispersal processes with geographic population expansion. The parameter alpha was estimated by fitting the kernels to dispersal data and by fitting the IDE model to range expansion data. For all kernels, the alpha estimate from range expansion data fell within the 95% confidence intervals of the alpha estimate from dispersal data. The IDE models with exponentially bounded kernels predicted invasion velocities that were captured within the 95% confidence bounds on the observed northbound invasion velocity. However, the exponentially bounded kernels yielded range expansions that were in poor qualitative agreement with range expansion data. An IDE model with fat (exponentially unbounded) tails and accelerating spatial spread yielded the best qualitative match. This model explained 94% and 97% of the variation in northbound and southbound range expansions when fit to range expansion data. These otters may have been fat-tailed accelerating invaders or they may have followed a piece-wise linear spread first over kelp forests and then over sandy habitats. Further, habitat-specific dispersal data could resolve these explanations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号