首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  2018年   3篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1978年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
In previous studies we have shown that platelet-activating factor (PAF) is a potent vasoactive substance with deleterious effects on coronary blood flow (CBF) and myocardial performance. The present study further investigates the effects of PAF during its sustained intracoronary infusion in the blood-perfused domestic pig (n = 16). PAF infusion (1-9 nmol/min) produced triphasic changes in CBF (n = 7): an initial brief phase of coronary dilation (14 +/- 2% above baseline), followed by severe reduction in CBF due to increase in coronary vascular resistance and a third phase of escape that was characterized by return of CBF towards baseline in spite of continuing PAF infusion. In 9 remaining pigs PAF infusion had a biphasic response: the first phase of coronary dilation rapidly turned into severe coronary constriction accompanied by severe systemic hypotension and death within a few min. PAF infusion caused a profound rise in systemic arterial and coronary venous thromboxane B2 levels, while 6-keto-PGF1 alpha and leukotriene C4-immunoreactivity levels were not changed. Indomethacin completely blocked the rise in thromboxane level during PAF infusion and abolished the constrictor effect of PAF on the coronary vessels. These data suggest that PAF might play a detrimental role on the coronary circulation and cardiac function, primarily through thromboxane A2 mediated mechanism.  相似文献   
2.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
3.
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.  相似文献   
4.
The aim of the present study was to investigate the interrelationship of the kinin system, nitric oxide and eicosanoids in the acute phase of antigen-induced arthritis (AIA) in rabbits. The arthritis was induced in immunized rabbits and the following parameters were evaluated 24 hours later: leukocyte influx (total and differential white cell count), vascular permeability (Evans's blue method), and synovial PMN cell infiltrate. PGE2 and LTB4 (radioimmunoassay) levels were quantified in the synovial fluid. The animals were pre-treated with 20mg/kg/day during 14 days with L-NAME or D-NAME and/or Enalapril (0.12 mg/kg/day-14 days), and/or the B2 antagonist of Bradykinin HOE 140 (0.9 mg/kg). Our results showed that L-NAME was effective in the prevention of AIA with reduction of all Inflammatory parameters analyzed. Enalapril partially reverted the L-NAME anti-inflammatory effects. The simultaneous treatment with HOE 140 abolished this reversion and returned the inflammatory parameters to the levels observed in L-NAME treated animals. Our results suggest that pressoric alterations induced by L-NAME could not account for all its anti-inflammatory action in this model of experimental arthritis. Additionally the contribution of the kinin system in AIA was characterized as well as its interaction with eicosanoids and nitric oxide.  相似文献   
5.
In order to investigate the effect of fat-rich diets on neutrophil functions, 21 day-aged rats were fed for 6 weeks with a control diet consisting of a regular laboratory rodent chow (4 per cent final fat content), a control diet supplied with soybean oil (15 per cent final fat content), or a control diet supplied with coconut oil (15 per cent final fat content). Glycogen-elicited peritoneal neutrophils from rats fed soybean and coconut oil-enriched diets presented a reduction in spontaneous and PMA-stimulated H2O2 generation relative to neutrophils from rats fed the control diet. The activity of superoxide dismutase, glutathione peroxidase and catalase did not change in animals fed fat-rich diets. In addition, the capacity to generate O2-, spontaneously or in response to PMA, did not change in neutrophils from animals fed fat-rich diets. Values attained matched those observed in animals fed the control diet, regardless of the method used to measure O2-, the superoxide dismutase-inhibitable reduction of cytochrome c or the lucigenin-dependent chemiluminescence. However, the initial rate of O2- generation both in resting neutrophils and in PMA-stimulated cells was significantly reduced when animals were fed with coconut or soybean oil-enriched diets due, at least in part, to a reduction in the activity of glucose-6-phosphate dehydrogenase. The concentration of thiobarbituric acid reactive substances, an index of lipid peroxidation, was increased in animals fed both fat-rich diets. This was accompanied by an increase in arachidonic acid content in these cells. Results presented suggest that lipid peroxidation in neutrophils from animals fed fat-rich diets may be associated with a consumption of H2O2 yielding more reactive oxygen-derived species such as the hydroxyl radical.  相似文献   
6.
7.
Non-alcoholic fatty liver disease (NAFLD) is intimately associated with insulin resistance and hypertriglyceridemia, whereas many of the mechanisms underlying this association are still poorly understood. In the present study, we investigated the relationship between microsomal triglyceride transfer protein (MTP) and markers of endoplasmic reticulum (ER) stress in the liver of rats subjected to neonatal monosodium l-glutamate (MSG)-induced obesity. At age 120 days old, the MSG-obese animals exhibited hyperglycemia, hypertriglyceridemia, insulin resistance, and liver steatosis, while the control (CTR) group did not. Analysis using fast protein liquid chromatography of the serum lipoproteins revealed that the triacylglycerol content of the very low-density lipoprotein (VLDL) particles was twice as high in the MSG animals compared with the CTR animals. The expression of ER stress markers, GRP76 and GRP94, was increased in the MSG rats, promoting a higher expression of X-box binding protein 1 (XBP-1), protein disulfide isomerase (PDI), and MTP. As the XBP-1/PDI/MTP axis has been suggested to represent a significant lipogenic mechanism in the liver response to ER stress, our data indicate that hypertriglyceridemia and liver steatosis occurring in the MSG rats are associated with increased MTP expression.  相似文献   
8.
9.
Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses.  相似文献   
10.
Protein disulfide isomerase in redox cell signaling and homeostasis   总被引:1,自引:0,他引:1  
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号