首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.

Background

Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins.

Objective

To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV.

Methods

ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated.

Results

bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV.

Conclusions

The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.  相似文献   
2.

Background

In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF), a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied.

Methods

Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD). Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test). Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically.

Results

The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes.

Conclusions

This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and immune-related gastrointestinal disorders among shift workers.  相似文献   
3.
Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils. Basal alpha(4) integrin activation was associated with activation of the small GTPase Rap1, a known regulator of agonist-induced integrin function. Basal Rap activation was dependent upon phospholipase C, but not intracellular Ca(2+). However, depletion of intracellular Ca(2+) in CD34(+) hematopoietic progenitor cells abolished RapV12-mediated induction of alpha(4) integrin activity. Thus, residual Rap activity or constitutively active Rap activity in Ca(2+)-depleted cells is not sufficient to induce alpha(4) integrin activation. These data suggest that activation of functional alpha(4) integrin activity in resting eosinophils is mediated by Rap1 provided that the intracellular-free Ca(2+) is at a normal homeostatic concentration.  相似文献   
4.
The hypothesis was tested that different chemoattractants have different effects on the activity of integrins expressed by the human eosinophil. Three chemoattractants, CXCL8 (IL-8), CCL11 (eotaxin-1), and C5a were tested with respect to their ability to induce migration and the transition of eosinophils from a rolling interaction to a firm arrest on activated endothelial cells under flow conditions. CCL11 and C5a induced a firm arrest of eosinophils rolling on an endothelial surface, whereas CXCL8 induced only a transient arrest of the cells. The CXCL8- and CCL11-induced arrest was inhibited by simultaneously blocking alpha4 integrins (HP2/1) and beta2 integrins (IB4). In contrast, the C5a-induced arrest was only inhibited by 30% under these conditions. The potency differences of C5a>CCL11>CXCL8 to induce firm adhesion under flow condition was also observed in migration assays and for the activation of the small GTPase Rap-1, which is an important signaling molecule in the inside-out regulation of integrins. Interestingly, only C5a was able to induce the high activation epitope of alphaMbeta2 integrin recognized by MoAb CBRM1/5. The C5a-induced appearance of this epitope and Rap activation was controlled by phospholipase C (PLC), as was shown with the PLC inhibitor U73122. These data show that different chemoattractants are able to induce distinct activation states of integrins on eosinophils and that optimal chemotaxis is associated with the high activation epitope of the alphaMbeta2 integrin. Furthermore, PLC plays an important role in the inside-out signaling and, thus, the activation status of integrins on eosinophils.  相似文献   
5.
Severe primary respiratory syncytial virus (RSV) infections are characterized by bronchiolitis accompanied by wheezing. Controversy exists as to whether infants suffer from virus-induced lung pathology or from excessive immune responses. Furthermore, detailed knowledge about the development of primary T-cell responses to viral infections in infants is lacking. We studied the dynamics of innate neutrophil and adaptive T-cell responses in peripheral blood in relation to theviral load and parameters of disease in infants admitted to the intensive care unit with severe RSV infection. Analysis of primary T-cell responses showed substantial CD8+ T-cell activation, which peaked during convalescence. A strong neutrophil response, characterized by mobilization of bone marrow-derived neutrophil precursors, preceded the peak in T-cell activation. The kinetics of this neutrophil response followed the peak of clinical symptoms and the viral load with a 2- to 3-day delay. From the sequence of events, we conclude that CD8+ T-cell responses, initiated during primary RSV infections, are unlikely to contribute to disease when it is most severe. The mobilization of precursor neutrophils might reflect the strong neutrophil influx into the airways, which is a characteristic feature during RSV infections and might be an integral pathogenic process in the disease.Viral infections are characterized by a dynamic interplay between the pathogen and defensive innate and adaptive immune responses of the host (35, 38). Upon infection, virus-specific structural components are recognized by pattern recognition receptors of the host, which triggers a mechanism aimed at the suppression of virus replication and eventually virus elimination. Each virus has a characteristic signature of triggering innate immune receptors and methods to counteract immune responses of the host, which ultimately results in an immune response tailored to the particular properties of the infecting virus (6).Most insights into the sequence of events occurring during viral infections have been obtained from animal experiments, where the immunological control of viral infections can be studied in detail. In many murine models, the crucial role of CD8+ T cells in complete elimination of the virus during acute infections has been well established (9, 20, 27). However, both virus-induced damage and immune pathology might contribute to the disease, depending on the type of viral infection and/or the intensity of the innate and adaptive immune responses triggered (10, 20, 37, 41, 49, 60).Primary infections with respiratory syncytial virus (RSV) can cause severe bronchiolitis and pneumonia in infants (24). For RSV, the mouse is not a good model to study primary disease because the virus replicates poorly in murine cells. Hence, to obtain insight into the mechanism of disease caused by RSV, infection studies in humans or nonhuman primate models are needed. We and others have shown that RSV infection causes a strong influx of neutrophils into the airways (15, 25, 48). In addition, we have recently shown that substantial virus-specific CD8+ T-cell responses can be elicited in infants with severe RSV infections (25). However, it is still a controversial issue whether the severe manifestations of lower respiratory tract disease are caused directly by the virus or by innate and/or adaptive immune responses triggered by RSV (8, 20, 31, 57). In our previous work, we found no relation between the severity of disease and the number of virus-specific CD8+ T cells in peripheral blood (25). Moreover, a direct role of the viral load or different viral strains in disease severity has not been established convincingly (11, 59).Data on the development of primary T-cell responses in infants (<6 months old) during acute viral infections and after vaccinations are sparse. It is generally accepted that the infant immune system is immature and less effective than that of older children or adults. This has been shown by lower activation and/or Th2-polarized adaptive immune responses (1, 2, 58). For RSV-induced disease, it has been suggested that a Th2-biased immune response might be correlated with disease (39, 45, 50), but this idea has been challenged by others (4, 7, 12).Currently, there is no RSV vaccine, and the only preventive treatment available is a humanized neutralizing antibody specific for the fusion protein of RSV that is administered to high-risk groups and is effective in about 60% of children (29). Immune-suppressive or antiviral treatments during severe RSV disease have marginal to no effect (3, 23, 55). Insights into the kinetics of the viral load and disease course in relation to activation of the innate and adaptive immune response will shed light on factors that are attributed to severe RSV-induced disease and will possibly provide leads for the development of curative treatment. We therefore monitored the dynamics of these parameters in infants admitted to the pediatric intensive care unit (ICU) with severe primary RSV infections. During primary RSV infection, the peak values of the viral load and disease severity were followed by the exhaustion of the peripheral blood neutrophil pool, indicating a strong innate immune response closely associated with the peak of disease. We further showed that this natural respiratory infection elicited a strong primary CD8+ T-cell response in the very young patients (<3 months). This T-cell response was undetectable at the moment of hospitalization, when the infants were severely ill, and peaked at convalescence. Therefore, severe primary RSV disease does not seem to be caused by inadequate or exaggerated T-cell responses but is most likely initiated by viral damage followed by intense innate immune processes.  相似文献   
6.
The major capsular polysaccharide glucuronoxylomannan (GXM) of the pathogenic fungus Cryptococcus neoformans has been associated with depression of a variety of immunological host responses. For one, GXM has been shown to interfere with the migration of phagocytes to sites of inflammation by interference with both chemokinesis and leucocyte adhesion to the endothelium. We reported previously that GXM blocks the firm adhesion of neutrophils (PMNs) to endothelium in a static adhesion model, most probably by interfering with E-selectin binding pathways. Using a flow model, we now demonstrate that GXM also interferes with the initial rolling phase of PMN adhesion to endothelium (40% decrease) as well as to E-selectin-transfected CHO cells (43% inhibition). Furthermore, we show that CD14 and TLR4, which are known receptors for GXM, mediate this interference with PMN rolling. However, thus far, we are not able to identify the ligand of E-selectin on the surface of PMNs that is specifically affected by GXM. In conclusion, cryptococcal GXM interferes with both rolling and fixed binding of neutrophils on the endothelium, providing a novel means of contributing to the absence of neutrophil infiltration observed in cryptococcal infections.  相似文献   
7.
Increased serum levels of TNFα and GM-CSF are found in various chronic inflammatory diseases and these cytokines affect the function of circulating and tissue neutrophils. TNFα- and GM-CSF-induced protein expression profiles could, therefore, serve as biomarker for the action of these cytokines in vivo. We stimulated human peripheral neutrophils with TNFα and GM-CSF in vitro and analyzed changes in their proteome by fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). We report the differential expression of 3 and 18 protein spots following TNFα and GM-CSF stimulation, respectively. Differences in protein expression induced by TNFα were limited and did not show discriminatory power in a principal component analysis, whereas the profile induced by GM-CSF did. TNFα- and GM-CSF-induced both de novo IL-1β and sIL-1Ra protein expression as detected by Western blot analysis, which confirmed proper neutrophil activation by these cytokines in vitro. Mass spectrometry analysis of cytokine-regulated protein spots resulted in the identification of 8 proteins. Among the identified proteins, enolase 1 and annexin A1 might function as markers for peripheral neutrophil activation.In conclusion, a proteomic analysis of neutrophils by 2D-DIGE provides proof-of-principle that cytokine-induced protein profiles can serve as biomarkers for the action of individual cytokines in vivo.  相似文献   
8.
We investigated how the electrophysiological signature of contour integration is changed by the context in which a contour is embedded. Specifically, we manipulated the orientations of Gabor elements surrounding an embedded shape outline. The amplitudes of early visual components over posterior scalp regions were changed by the presence of a contour, and by the orientation of elements surrounding the contour. Differences in context type had an effect on the early P1 and N1 components, but not on the later P2 component. The presence of a contour had an effect on the N1 and P2 components, but not on the earlier P1 component. A modulatory effect of context on contour integration was observed on the N1 component. These results highlight the importance of the context in which contour integration takes place.  相似文献   
9.
10.
Detachment of the rear of the cell from its substratum is an important aspect of locomotion. The signaling routes involved in this adhesive release are largely unknown. One of the few candidate proteins to play a role is RhoA, because activation of RhoA in many cell types leads to contraction, a mechanism probably involved in detachment. To study the role of RhoA in detachment regulation, we analyzed several subsets of expert migratory leukocytes by video microscopy. In contrast to fast-migrating neutrophils, eosinophils do not detach the rear of the cell unless stimulated with serum. When measuring the amount of active RhoA, with the use of a GST-Rhotekin pulldown assay, we found that serum is an excellent activator of RhoA in granulocytes. Inhibition of RhoA or one of Rho's target proteins, the kinase ROCK, in neutrophils leads to the phenotype seen in eosinophils: the rear of the cell is firmly attached to the substratum, whereas the cell body is highly motile. ROCK-inhibition leads to impaired migration of granulocytes in filters, on glass, and through endothelial monolayers. Also, the ROCK signaling pathway is involved in changes of integrin-mediated adhesion. Eosinophil transduction by a tat-fusion construct containing active RhoA resulted in detachment stimulation in the presence of chemoattractant. From these results we conclude that activation of the RhoA-ROCK pathway is essential for detachment of migratory leukocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号