首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5755篇
  免费   466篇
  6221篇
  2023年   20篇
  2022年   48篇
  2021年   102篇
  2020年   59篇
  2019年   84篇
  2018年   93篇
  2017年   103篇
  2016年   124篇
  2015年   243篇
  2014年   269篇
  2013年   395篇
  2012年   463篇
  2011年   454篇
  2010年   323篇
  2009年   272篇
  2008年   388篇
  2007年   396篇
  2006年   371篇
  2005年   326篇
  2004年   319篇
  2003年   279篇
  2002年   279篇
  2001年   67篇
  2000年   62篇
  1999年   63篇
  1998年   68篇
  1997年   48篇
  1996年   37篇
  1995年   34篇
  1994年   26篇
  1993年   22篇
  1992年   37篇
  1991年   22篇
  1990年   29篇
  1989年   22篇
  1988年   30篇
  1987年   18篇
  1986年   15篇
  1985年   18篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1981年   11篇
  1979年   10篇
  1978年   13篇
  1977年   11篇
  1975年   10篇
  1974年   10篇
  1973年   12篇
  1966年   8篇
排序方式: 共有6221条查询结果,搜索用时 0 毫秒
1.
2.
Voltage-gated Na+ channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca2+ permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca2+ or Na+ ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca2+ permeability, suggesting that ion–toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.  相似文献   
3.
In this paper, we describe an efficient procedure for the purification of yeast phosphofructokinase. This procedure eliminates any time delay and enables to obtain an enzyme with minimum proteolytic alterations. The molecular weights of the oligomeric enzyme and of its constitutive subunits were both evaluated by means of several independent methods. However, the accuracy of each measurement was not sufficient to discriminate between an hexameric and an octameric structure of the enzyme oligomer. On the other hand, crosslinking experiments demonstrated the octameric structure of yeast phosphofructokinase. Obviously, some methods of molecular weight determination have led to erroneous results. In particular, our experiments show that the reliability of molecular weight determinations performed by gel filtration of native proteins must be considered with caution.  相似文献   
4.
Abstract

An in situ method is described for synthesizing DNA which incorporates a new series of amidine protected deoxy-nucleosides and bis-dialkylaminophosphines as phosphitylating agents. These procedures were used to synthesize d(GGGAATTCCC) which was digested by EcoRI.  相似文献   
5.
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.  相似文献   
6.
7.
8.
Galactose-grown cells of the heterofermentative lactic acid bacteria Lactobacillus brevis and Lactobacillus buchneri transported methyl-beta-D-thiogalactopyranoside (TMG) by an active transport mechanism and accumulated intracellular free TMG when provided with an exogenous source of energy, such as arginine. The intracellular concentration of TMG resultant under these conditions was approximately 20-fold higher than that in the medium. In contrast, the provision of energy by metabolism of glucose, gluconate, or glucosamine promoted a rapid but transient uptake of TMG followed by efflux that established a low cellular concentration of the galactoside, i.e., only two- to fourfold higher than that in the medium. Furthermore, the addition of glucose to cells preloaded with TMG in the presence of arginine elicited a rapid efflux of the intracellular galactoside. The extent of cellular TMG displacement and the duration of the transient effect of glucose on TMG transport were related to the initial concentration of glucose in the medium. Exhaustion of glucose from the medium restored uptake and accumulation of TMG, providing arginine was available for ATP generation. The nonmetabolizable sugar 2-deoxyglucose elicited efflux of TMG from preloaded cells of L. buchneri but not from those of L. brevis. Phosphorylation of this glucose analog was catalyzed by cell extracts of L. buchneri but not by those of L. brevis. Iodoacetate, at a concentration that inhibits growth and ATP production from glucose, did not prevent efflux of cellular TMG elicited by glucose. The results suggested that a phosphorylated metabolite(s) at or above the level of glyceraldehyde-3-phosphate was required to evoke displacement of intracellular TMG from the cells. Counterflow experiments suggested that glucose converted the active uptake of TMG in L. brevis to a facilitated diffusion mechanism that allowed equilibrium of TMG between the extra- and intracellular milieux. The means by which glucose metabolites elicited this vectorial regulation is not known, but similarities to the inducer expulsion that has been described for homofermentative Streptococcus and Lactobacillus species suggested the involvement of HPr, a protein that functions as a phosphocarrier protein in the phosphotransferase system, as well as a presumptive regulator of sugar transport. Indeed, complementation assays wit extracts of Staphylococcus aureus ptsH mutant revealed the presence of HPr in L. brevis, although this lactobacillus lacked a functional phaosphoenolpyruvate-dependent phosphortransferase system for glucose, 2-deoxyglucose, or TMG.  相似文献   
9.
Summary Endocytosis via the hyaluronic acid/chondroitin sulphate receptor of rat liver endothelial cells was studied ultrastructurally, by use of a probe consisting of chondroitin sulphate proteoglycan attached to 15-nm gold particles. The probe bound to the surface of the cells exclusively in coated regions of the plasma membrane. Internalization at 37° C took place in less than one minute during which time interval the bound probe was transferred to coated vesicles. Further transfer to lysosomes was delayed in association with an accumulation of probes in a prelysosomal compartment consisting of large vacuoles in which probes lined the inner aspect of the membrane. Transport to lysosomes occurred only after a lag phase of at least 40–60 min at 37° C.Abbreviations CS chondroitin sulphate - CSPG chondroitin sulphate proteoglycan - CSPG-Au CSPG-gold complex - EM electronmicroscopical or electron microscopy - HA hyaluronic acid - KC Kuppfer cells - LEC liver endothelial cells - PC parenchymal cells - RES reticuloendothelial system  相似文献   
10.
Crude extracts or supernatants of broken cells of Clostridium formicoaceticum reduce unbranched, branched, saturated and unsaturated carboxylates at the expense of carbon monoxide to the corresponding alcohols. The presence of viologens with redox potentials varying from E 0=-295 to-650 mV decreased the rate of propionate reduction. The more the propionate reduction was diminished the more formate was formed from carbon monoxide. The lowest propionate reduction and highest formate formation was observed with methylviologen. The carbon-carbon double bond of E-2-methyl-butenoate was only hydrogenated when a viologen was present. Formate as electron donor led only in the presence of viologens to the formation of propanol from propionate. The reduction of propionate at the expense of a reduced viologen can be followed in cuvettes. With respect to propionate Michaelis Menten behavior was observed. Experiments are described which lead to the assumption that the carboxylates are reduced in a non-activated form. That would be new type of biological reduction.Non-standard abbreviations glc Gas liquid chromatography - HPLC high performance liquid chromatography - RP reverse phase; Mediators (the figures in parenthesis of the mediators are redox potentials E 0 in mV) - CAV2+ carbamoylmethylviologen, 1,1-carbamoyl-4,4-dipyridinium dication (E 0=-296 mV) - BV2+ benzylviologen, 1,1-dibenzyl-4,4-dipyridinium dication (E 0=-360 mV) - MV methylviologen, 1,1-dimethyl-4,4-dipyridinium-dication (E 0=-444 mV) - DMDQ2+ dimethyldiquat, 4,4-dimethyl-2,2-dipyridino-1,1-ethylendication (E 0=-514 mV) - TMV2+ tetramethylviologen, 1,1,4,4-tetramethyl-4,4-dipyridinium dication (E 0=-550 mV) - PDQ2+ propyldiquat, 2,2-dipyridino-1,1-propenyl dication (E 0=-550 mV) - DMPDQ2+ dimethylpropyldiquat, 4,4-dimethyl-2,2-dipyridino-1,1-propenyl dication (E 0=-656 mV) - PN productivity number=mmol product (obtained by the uptake of one pair of electrons) x (biocatalyst (dry weight) kg)-1×h-1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号