首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   33篇
  2020年   5篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   9篇
  2012年   10篇
  2011年   5篇
  2010年   11篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   7篇
  2001年   11篇
  2000年   11篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1956年   1篇
  1934年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
1.
2.
Cloning of a lymphocyte homing receptor reveals a lectin domain   总被引:72,自引:0,他引:72  
Lymphocytes express cell surface molecules, termed homing receptors, that mediate their selective attachment to specialized high endothelial venules found within secondary lymphoid organs. Previous work has demonstrated that the adhesive interaction between lymphocytes and the endothelium of peripheral lymph nodes appears to involve a lectin-like activity. Moreover, MEL-14, a monoclonal antibody that blocks lymphocyte-peripheral lymph node binding and presumably recognizes the homing receptor mediating this adhesive interaction, appeared to detect the lectin-like receptor. In this paper we describe the cloning of a murine cDNA that encodes the antigen recognized by the MEL-14 antibody. Characterization of the cDNA encoding the putative mouse peripheral lymph node-specific homing receptor shows that it contains a lectin domain that appears to be involved in the binding of lymphocytes to peripheral lymph node endothelium, thus defining a new type of cellular adhesion molecule. This result supports a novel mechanism for the distribution of lymphocyte populations to various lymphoid organs.  相似文献   
3.
Y Imai  L A Lasky  S D Rosen 《Glycobiology》1992,2(4):373-381
L-Selectin is a lectin-like receptor on lymphocytes which mediates their attachment to high endothelial venules (HEV) within lymph nodes. Previous work has identified HEV-associated endothelial ligands for L-selectin as sialylated, fucosylated and sulphated glycoproteins of approximately 50 kDa and approximately 90 kDa (Sgp50 and Sgp90). The interaction of L-selectin with these ligands is carbohydrate directed, reflecting the involvement of its amino-terminal, calcium-type lectin domain. It has been reported, and we have confirmed, that anti-Ly22 blocks the adhesive function of L-selectin without reducing its binding to a carbohydrate- based ligand PPME (phosphomannan monoester core from Hansenula hostii). The epitope for this monoclonal antibody depends on the epidermal growth factor (EGF) domain of L-selectin. We demonstrate that anti-Ly22 inhibits the interaction of L-selectin with both of the Sgps, thus establishing that the interaction of L-selectin with HEV can be accounted for by the Sgps. Furthermore, the interaction of trypsin fragments of Sgp50 with L-selectin is inhibitable both by an antibody that maps to the lectin domain and by anti-Ly22. These findings raise the possibility that anti-Ly22 is affecting the function of the lectin domain of L-selectin rather than directly antagonizing the EGF domain. Toward a further characterization of L-selectin's carbohydrate specificity, we show that Sgp50 is partially inactivated by the linkage-specific Newcastle Disease virus sialidase (alpha 2,3 linkage). We additionally demonstrate that a sialyl Lewis x-related tetrasaccharide can interact with L-selectin, as has also been demonstrated for E-selectin and P-selectin.  相似文献   
4.
Results of studies in mice and clinical observations in man indicate that T cell-mediated immunity is important in resistance to herpes simplex virus (HSV) infections. This study was undertaken to elucidate the viral antigen specificity of human HSV-immune T cells. Purified HSV-1 glycoproteins gB-1 and gD-1, cloned and expressed in mammalian cells, were found to stimulate proliferation of, and interleukin 2 (IL 2) production by, peripheral blood lymphocytes (PBL) of HSV seropositive individuals, indicating the presence of memory T cells to gB-1 and gD-1 in individuals with serologic evidence of immunity to HSV. Second, T cell clones, generated by stimulation of PBL with HSV-1, were found to recognize gB-1 or gD-1, as evidenced by the ability of the clones to proliferate in response to stimulation with gB-1 or gD-1 in the absence of exogenous IL 2. Third, HSV-specific T cell clones, lytic for HSV-1 or both HSV-1- and HSV-2-infected autologous target cells, were generated after stimulation of PBL with purified cloned gB-1 or gD-1. Our findings, that human HSV-specific T cells can recognize and be activated by HSV subunit antigens gB-1 or gD-1, imply that these glycoproteins play a role in human T cell-mediated immunity to HSV and support the contention that a gB-1 or gD-1 subunit vaccine may be protective in man.  相似文献   
5.
Murine and human leukocytes express surface glycoproteins, termed homing receptors (HRs), containing lectin-like, EGF-like (egf), and complement binding-like domains, that apparently endow these cells with the ability to home to peripheral lymph nodes (pln's) by virtue of an adhesive interaction with the pln postcapillary venule endothelium. The murine pln HR was initially characterized with a rat monoclonal antibody, Mel 14, that was specific for the murine form of the receptor. This work demonstrated that Mel 14 blocked the binding of murine lymphocytes to pln endothelium both in vitro and in vivo, a result consistent with the possibility that this monoclonal antibody recognizes a region of the HR that is involved with endothelium recognition and adhesion. In addition, this antibody also blocked the binding to the HR of PPME, a polyphosphomannan carbohydrate known to inhibit lymphocyte-pln endothelium interactions, suggesting that Mel 14 may recognize the lectin domain of the pln HR. Here we show that, while Mel 14 recognized truncated HR containing both the lectin and egf domains, antibody recognition was lost when the lectin domain alone was expressed. Chimeric molecules, in which regions of the lectin domain of the non-Mel 14-reactive human pln HR were replaced with homologous regions of the murine pln HR, demonstrated that the Mel 14 recognition site is within the NH2-terminal 53 amino acids of the lectin domain. These results suggest that the Mel 14 monoclonal antibody recognizes a determinant within the lectin domain of the pln HR whose conformation may be dependent upon the presence of the egf domain. Since Mel 14 efficiently blocks lymphocyte-endothelial interactions, these results support the hypothesis that the pln HR lectin domain may be directly involved with binding of lymphocytes to a carbohydrate ligand on the pln postcapillary venule endothelium.  相似文献   
6.
Lymphocyte trafficking is a fundamental aspect of the immune system that allows B and T lymphocytes with diverse antigen recognition specificities to be exposed to various antigenic stimuli in spatially distinct regions of an organism. A lymphocyte adhesion molecule that is involved with this trafficking phenomenon has been termed the homing receptor. Previous work (Lasky, L., T. Yednock, M. Singer, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S. Rosen. 1989. Cell. 56:1045-1055) has characterized a cDNA clone encoding a murine homing receptor that is involved in trafficking of lymphocytes to peripheral lymph nodes. This molecule was found to contain a number of protein motifs, the most intriguing of which was a carbohydrate binding domain, or lectin, that is apparently involved in the adhesive interaction between murine lymphocytes and peripheral lymph node endothelium. In this study, we have used the murine cDNA clone to isolate a human homologue of this peripheral lymph node-specific adhesion molecule. The human receptor was found to be highly homologous to the murine receptor in overall sequence, but showed no sequence similarity to another surface protein that may be involved with human lymphocyte homing, the Hermes glycoprotein. The extracellular region of the human receptor contained an NH2 terminally located carbohydrate binding domain followed by an EGF-like domain and a domain containing two repeats of a complement binding motif. Transient cell transfection assays using the human receptor cDNA showed that it encoded a surface glycoprotein that cross reacted with a polyclonal antibody directed against the murine peripheral lymph node homing receptor. Interestingly, the human receptor showed a high degree of sequence homology to another human cell adhesion glycoprotein, the endothelial cell adhesion molecule ELAM.  相似文献   
7.
An Ustilago maydis ergosterol biosynthesis mutant (A14) which is partially blocked in sterol 14alpha-demethylase (P45014DM) activity is described. This mutant accumulated the abnormal 14alpha-methyl sterols, eburicol, 14alpha-methylfecosterol, and obtusifoliol, along with significant amounts of ergosterol. Although the A14 mutant grew nearly as well as the wild type, it was impaired in cell extension growth, which indicated a dysfunction in apical cell wall synthesis. The mutant was also found to be hypersensitive to the azole fungicides penconazole and tebuconazole.  相似文献   
8.
9.
The leukocyte homing receptor (HR), the endothelial leukocyte adhesion molecule, and gmp140/platelet activation-dependent granule membrane protein are members of a family of adhesion molecules, termed the lectin cell adhesion molecules (LEC-CAMS) which are unified by a multi-domain structure containing a lectin motif, an epidermal growth factor-like (egf) motif, and variable numbers of a complement binding-like (CB) motif. Previous data have indicated a predominant role for the lectin motif in cell adhesion directed by the LEC-CAMS, although the egf-like domain of the HR may also play a potential role in cell binding. While the role(s) of the CB domains in the LEC-CAMS is currently not understood, they have been hypothesized to act as rigid spacers or stalks for lectin and perhaps, egf domain presentation. In this paper, we analyze the functional characteristics of murine HR-IgG chimeras containing the lectin, lectin plus egf, and lectin plus egf plus CB domains. The Mel 14 mAb, an adhesion blocking antibody which recognizes a conformational determinant in the N-terminus of the HR lectin domain, shows a significantly decreased affinity for a HR construct which lacks the CB motifs, consistent with the possibility that the CB domains are involved with lectin domain structure. In agreement with this conjecture, HR mutants lacking the CB domains show a profound decrease in lectin-specific interaction with the carbohydrate polyphosphomannan ester, suggesting that the changes in Mel 14 affinity for the lectin domain are reflected in lectin functionality. Various assays investigating the interactions between the HR deletion mutants and the peripheral lymph node high endothelium, including cell blocking, immunohistochemical staining, and radioactively labeled ligand binding, all showed that removal of the CB domains results in a lack of HR adhesive function. These results imply that the CB domains of the HR, and, by analogy, the other members of the LEC-CAM family, may play important structural roles involving induction of lectin domain conformation and resultant functionality.  相似文献   
10.
The means by which leukocytes, including lymphocytes, monocytes, and neutrophils, migrate from the circulation to sites of acute and chronic inflammation is an area of intense research interest. Although a number of soluble mediators of these important cellular interactions have been identified, a major site of great importance to the inflammatory response is the physical interface between the white cell and the endothelium. This critical association is mediated by an array of cell surface adhesion molecules. Previous data have demonstrated that the integrin subfamily of heterotypic adhesion molecules was a major component of these adhesive interactions, although it was clear that other, non-integrin-like molecules of unknown identity also seemed to be involved during the inflammatory process. A number of these other cell-surface glycoproteins which may be involved with inflammation have recently been characterized by molecular cloning. These glycoproteins, including the peripheral lymph node homing receptor (pln HR), the endothelial cell adhesion molecule (ELAM), and PADGEM/gmp140, are all members of a family of proteins which are unified by the inclusion of three characteristic protein motifs: a lectin or carbohydrate recognition domain, an epidermal growth factor (egf) domain, and a variable number of short consensus repeats (scr) which are also found in members of the complement regulatory proteins. The appearance of lectin domains in all of these adhesion molecules is consistent with the possibility that these glycoproteins function by binding to carbohydrates which are expressed in a cell and/or region specific manner, and the members of this adhesion family have been given the generic name LEC-CAM (lectin cell adhesion molecules).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号