首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
2.
The isotropic mobility of separate regions of the intact molecule of immunoglobulin M (IgM) and its Fab and (Fc)5 fragments was studied using spin-labeling of carbohydrate (2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl) and peptide (2,2,5,5-tetramethyl-3-dichlorotriazinylaminopyrrolidine-1-oxyl) moieties. The spin-labeled oligosaccharide groups (OGs) in the Fab region are shown to have much more amplitude of anisotropic motion than those in the (Fc)5 region. The spin label in the latter is evidently attached in the C mu 3 domain to one of its OGs which is probably stabilized by ionic contacts between terminal N-acetylneuraminic acid residue and the peptide moiety of the IgM molecule. When the amount of the glycosidase-cleaved carbohydrate does not exceed 10-15%, most OGs affected are of the Fab region. Upon profound splitting (greater than or equal to 50%) the OGs of the (Fc)5 region are also affected; that results evidently in loosening the ionic contacts between the shortened OGs and the peptide moiety of IgM, and consequently in increasing mobility of the former. The structure of the (Fc)5 region of IgM is labile; after detaching this moiety from the intact IgM molecule, its structure is stabilized, but one of its domains (C mu 3) becomes more mobile than it is in the intact IgM molecule; at the same time the amplitude of anisotropic motion of OG bound here is decreased. In the latter case, this decrease depends on the sequence of spin-labeling and fragmentation. The most probable cause of stabilization of the (Fc)5 fragment is the heating of IgM solution to 56 degree C during fragmentation with trypsin. At this temperature the tau value for the (Fc)5 fragment is unusually low, equaling 23 ns. The spin-labeling in the peptide part of IgM occurs mostly in the Fab region which is a rather rigid moiety as expected.  相似文献   
3.
The effect of lincocin (a plastid protein synthesis inhibitor) treatment on the greening process of bean (Phaseolus vulgaris L.) leaves have been studied. In comparison with control leaves treated ones had a decreased rate of chloroplast development. They had a marked chlorophyll deficiency and a decreased chlorophyll a/b ratio. Some long and short wavelength forms of chlorophyll a were lacking as evidenced from the absorption spectra at 25°C and the fluorescence spectra at 77°K. The –14CO2 fixation was inhibited by 80–90% in treated leaves. The fluorescence induced by the measuring light was greater in the treated leaves than in the control ones, and the kinetics of the decline of the relative fluorescence intensity were also different. Electron microscopic studies showed macrogranum-like structures and incomplete membrane vesicles in the treated plastids. After longer treatment a destruction of membranes was observed. The results indicate some structural and functional membrane deficiencies and instability of the membranes.  相似文献   
4.
Abstract

The EPR spectra of the preparations produced by spin labeling of the carbohydrate parts in monoclonal IgM and normal IgG with 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl as the spin label indicate the existence of a rapid spin-spin exchange interaction between two spin labels. In the case of spin-labeled IgM, the carrier of such a spectrum is shown to be a glycopeptide noncovalently bound to IgM; it includes two spin labels and may be detached from the macromolecule by a combination of dialysis and gel filtration.  相似文献   
5.
Summary

The larval development of the ophiocomid ophiuroid Ophiomastix venosais described using SEM. The gastrula transforms into a uniformly ciliated early larva which progressively changes into a lecithotrophic late premetamorphic larva with a continuous bilateral ciliated band. This stage is short-lived and equivalent to a highly reduced ophiopluteus. Comparisons between O. venosa and other ophiuroid species whose development has been investigated suggest that, whatever the developmental mode (lecithotrophic or planktotrophic), a pluteus stage always occurs in ophiuroids with planktonic development. Two metamorphic stages were identified, the late metamorphic larva differing from the early one by the closure of the larval mouth. The appearance of the permanent mouth marks the end of the metamorphosis. The postlarva still possesses remnants of larval features. The transformation of the reduced ophiopluteus into a barrel-shaped metamorphic larva with transverse ciliated bands, a vitellaria larva, is followed. The possible occurrence of a unique type of metamorphic larva in non-brooding ophiuroids is discussed. Verification of this, however, needs further SEM investigations on metamorphic larva from species having “regular” planktotrophic development.  相似文献   
6.
7.
Exposed lysine residues of human IgG were modified by a spin-label, 2,2,5,5-tetramethyl-3-male-imidopyrrolidine-1-oxyl at pH 9.2. Under these conditions, the degree of modification was about 10 lysine residues per protein molecule. The ESR spectrum of the spin-labeled immunoglobulin was much more mobile than that of spin-labeled immunoglobulin with the modification degree of about 1 residue that was obtained at pH 7.0. Thus, the sharp increase in the modification degree due to the increase in pH by two units leads to a marked loosening of the tertiary structure of the protein in solution, which is just indicated by the mobile ESR spectrum. Lithium chloride added to the solution of spin-labeled immunoglobulin induces a similar "immobilization" of its ESR spectra as sucrose.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号