首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   22篇
  国内免费   1篇
  252篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   10篇
  2014年   4篇
  2013年   11篇
  2012年   20篇
  2011年   15篇
  2010年   12篇
  2009年   5篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   5篇
  2004年   19篇
  2003年   10篇
  2002年   12篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1992年   2篇
  1990年   4篇
  1989年   2篇
  1987年   4篇
  1986年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
1.
  总被引:2,自引:0,他引:2  
The exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.), for which a high value is desired by most end-users. The association mapping (AM) method now allows more precise exploration of the entire genome. AM requires populations with substantial genetic variability of the traits of interest. The breeding lines at the end of a selection cycle, characterized for numerous traits, represent a potentially useful population for AM studies. Using three elite line populations, selected by several breeders and genotyped with about 2,500 Diversity Arrays Technology markers, several associations were identified between these markers and test weight, grain yield and heading date. To minimize spurious associations, we compared the general linear model and mixed linear model (MLM), which adjust for population structure and kinship differently. The MLM model with the kinship matrix was the most efficient. Finally, elite lines from several breeding programs had sufficient genetic variability to allow for the mapping of several chromosomal regions involved in the variation of three important traits.  相似文献   
2.
    
Dissolved organic carbon (DOC) plays a key role in the peatland carbon balance and serves numerous ecological and chemical functions including acting as a microbial substrate. In this study, we quantify the concentration, biodegradability, and intrinsic properties of DOC obtained from peat, fresh material, and litter from nine species of ombrotrophic bog vegetation. Potential biodegradability was assessed by incubating vegetation extracts for 28 days in the dark and measuring percent DOC loss as the fraction of biodegradable DOC (%BDOC) while DOC properties were characterized using UV–Vis absorbance and fluorescence measurements. The mean initial DOC concentration extracted differed significantly among species (P < 0.05) and was significantly higher in fresh material, 217 ± 259 mg DOC l?1, than either litter or peat extracts with mean concentrations of 82.1 ± 117 mg DOC l?1 and 12.7 ± 1.0 mg DOC l?1, respectively (P < 0.05). %BDOC also differed significantly among species (P < 0.05) and ranged from 52 to 73% in fresh cuttings with the greatest fraction observed in S. magellanicum; 22–46% in litter; and 24% in peat. The majority of variability (82.5%) in BDOC was explained by initial absorbance at 254 nm and total dissolved nitrogen concentration which was further resolved into significant non-linear relationships between %BDOC and both humic-like and protein-like DOC fractions (P < 0.05). Our results highlight the extremely heterogeneous nature of the surface vegetation-derived DOC input in peatlands and stress the importance of vegetation species in peatland ecosystem function.  相似文献   
3.
Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin.  相似文献   
4.
Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape.  相似文献   
5.
Summary. Tracing organismal histories on the timescale of the tree of life remains one of the challenging tasks in evolutionary biology. The hotly debated questions include the evolutionary relationship between the three domains of life (e.g., which of the three domains are sister domains, are the domains para-, poly-, or monophyletic) and the location of the root within the universal tree of life. For the latter, many different points of view have been considered but so far no consensus has been reached. The only widely accepted rationale to root the universal tree of life is to use anciently duplicated paralogous genes that are present in all three domains of life. To date only few anciently duplicated gene families useful for phylogenetic reconstruction have been identified. Here we present results from a systematic search for ancient gene duplications using twelve representative, completely sequenced, archaeal and bacterial genomes. Phylogenetic analyses of identified cases show that the majority of datasets support a root between Archaea and Bacteria; however, some datasets support alternative hypotheses, and all of them suffer from a lack of strong phylogenetic signal. The results are discussed with respect to the impact of horizontal gene transfer on the ability to reconstruct organismal evolution. The exchange of genetic information between divergent organisms gives rise to mosaic genomes, where different genes in a genome have different histories. Simulations show that even low rates of horizontal gene transfer dramatically complicate the reconstruction of organismal evolution, and that the different most recent common molecular ancestors likely existed at different times and in different lineages. Correspondence and reprints: Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, U.S.A. Present address: Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.  相似文献   
6.
7.
The Rab11 family of small GTPases is composed of three members, Rab11a, Rab11b, and Rab25. While recent work on Rab11a and Rab25 has yielded some insights into their function, Rab11b has received little attention. Therefore, we sought to examine the distribution of endogenous Rab11b in epithelial cells. In rabbit gastric parietal cells, unlike Rab11a, Rab11b did not colocalize or coisolate with H(+)/K(+)-ATPase. In MDCK cells, endogenous Rab11b localized to an apical pericentrisomal region distinct from Rab11a. The microtubule agents nocodazole and taxol dramatically alter Rab11a's localization in the cell, while effects on Rab11b's distribution were less apparent. These results indicate that in contrast to Rab11a, the Rab11b compartment in the apical region is not as dependent upon microtubules. While Rab11a is known to regulate transferrin trafficking in nonpolarized cells and IgA trafficking in polarized cells, Rab11b exhibited little colocalization with either of these cargoes. Thus, while Rab11a and Rab11b share high sequence homology, they appear to reside within distinct vesicle compartments.  相似文献   
8.
Gentilcore  LR; Derby  CD 《Chemical senses》1998,23(3):269-281
Our study was designed to examine how components of complex mixtures caninhibit the binding of other components to receptor sites in the olfactorysystem of the spiny lobster Panulirus argus. Biochemical binding assayswere used to study how two- to six-component mixtures inhibit binding ofthe radiolabeled odorants taurine, L-glutamate andadenosine-5'-monophosphate to a tissue fraction rich in dendritic membraneof olfactory receptor neurons. Our results indicate that binding inhibitionby mixtures can be large and is dependent on the nature of the odorantligand and on the concentration and composition of the mixture. The bindinginhibition by mixtures of structurally related components was generallypredicted using a competitive binding model and binding inhibition data forthe individual components. This was not the case for binding inhibition bymost mixtures of structurally unrelated odorants. The binding inhibitionfor these mixtures was generally smaller than that for one or more of theircomponents, indicating that complex binding interactions between componentscan reduce their ability to inhibit binding. The magnitude of bindinginhibition was influenced more by the mixture's precise composition than bythe number of components in it, since mixtures with few components weresometimes more inhibitory than mixtures with more components. Thesefindings raise the possibility that complex binding interactions betweencomponents of a mixture and their receptors may shape the output ofolfactory receptor neurons to complex mixtures.  相似文献   
9.
Recent studies have identified caveolin-1, a protein best known for its functions in caveolae, in apical endocytic recycling compartments in polarized epithelial cells. However, very little is known about the regulation of caveolin-1 in the endocytic recycling pathway. To address this question, in the current study we compared the relationship between compartments enriched in sub-apical caveolin-1 and Rab11a, a well-defined marker of apical recycling endosomes, using polarized MDCK cells as a model. We show that caveolin-1-containing vesicles define a compartment that partially overlaps with Rab11a, and that the distribution of subapical caveolin-1 and Rab11a shows a similar dependence on microtubule disruption. Mutants of the Rab11a effector, Rab11-FIP2 also altered the localization of caveolin-1. These findings indicate that caveolin-1 is coordinately regulated with Rab11a within the apical recycling system of polarized epithelial cells, suggesting that the two proteins are components of the same pathway.  相似文献   
10.
Clostridium difficile is the most common cause of antibiotic-associated nosocomial infection in the United States. C. difficile secretes two homologous toxins, TcdA and TcdB, which are responsible for the symptoms of C. difficile associated disease. The mechanism of toxin action includes an autoprocessing event where a cysteine protease domain (CPD) releases a glucosyltransferase domain (GTD) into the cytosol. The GTD acts to modify and inactivate Rho-family GTPases. The presumed importance of autoprocessing in toxicity, and the apparent specificity of the CPD active site make it, potentially, an attractive target for small molecule drug discovery. In the course of exploring this potential, we have discovered that both wild-type TcdB and TcdB mutants with impaired autoprocessing or glucosyltransferase activities are able to induce rapid, necrotic cell death in HeLa and Caco-2 epithelial cell lines. The concentrations required to induce this phenotype correlate with pathology in a porcine colonic explant model of epithelial damage. We conclude that autoprocessing and GTD release is not required for epithelial cell necrosis and that targeting the autoprocessing activity of TcdB for the development of novel therapeutics will not prevent the colonic tissue damage that occurs in C. difficile – associated disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号