首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   7篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   2篇
  1967年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.

Background  

Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells.  相似文献   
2.
The crystal structure of the fully oxidized di-heme peroxidase from Nitrosomonas europaea has been solved to a resolution of 1.80 A and compared to the closely related enzyme from Pseudomonas aeruginosa. Both enzymes catalyze the peroxide-dependent oxidation of a protein electron donor such as cytochrome c. Electrons enter the enzyme through the high-potential heme followed by electron transfer to the low-potential heme, the site of peroxide activation. Both enzymes form homodimers, each of which folds into two distinct heme domains. Each heme is held in place by thioether bonds between the heme vinyl groups and Cys residues. The high-potential heme in both enzymes has Met and His as axial heme ligands. In the Pseudomonas enzyme, the low-potential heme has two His residues as axial heme ligands [Fulop et al. (1995) Structure 3, 1225-1233]. Since the site of reaction with peroxide is the low-potential heme, then one His ligand must first dissociate. In sharp contrast, the low-potential heme in the Nitrosomonas enzyme already is in the "activated" state with only one His ligand and an open distal axial ligation position available for reaction with peroxide. A comparison between the two enzymes illustrates the range of conformational changes required to activate the Pseudomonas enzyme. This change involves a large motion of a loop containing the dissociable His ligand from the heme pocket to the molecular surface where it forms part of the dimer interface. Since the Nitrosomonas enzyme is in the active state, the structure provides some insights on residues involved in peroxide activation. Most importantly, a Glu residue situated near the peroxide binding site could possibly serve as an acid-base catalytic group required for cleavage of the peroxide O--O bond.  相似文献   
3.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Due to the many critical roles of heme, synthesis of heme is required by the vast majority of organisms. Despite significant investigation of both the microbial and eukaryotic enzyme, details of metal chelation remain unidentified. Here we present the first structure of the wild-type human enzyme, a lead-inhibited intermediate of the wild-type enzyme with bound metallated porphyrin macrocycle, the product bound form of the enzyme, and a higher resolution model for the substrate-bound form of the E343K variant. These data paint a picture of an enzyme that undergoes significant changes in secondary structure during the catalytic cycle. The role that these structural alterations play in overall catalysis and potential protein-protein interactions with other proteins, as well as the possible molecular basis for these changes, is discussed. The atomic details and structural rearrangements presented herein significantly advance our understanding of the substrate binding mode of ferrochelatase and reveal new conformational changes in a structurally conserved pi-helix that is predicted to have a central role in product release.  相似文献   
4.
In this work, we report the X-ray crystal structure of the aerobically isolated (oxidized) and the anaerobic dithionite-reduced (at pH 8.0) forms of the native Azotobacter vinelandii bacterioferritin to 2.7 and 2.0 A resolution, respectively. Iron K-edge multiple anomalous dispersion (MAD) experiments unequivocally identified the presence of three independent iron-containing sites within the protein structure. Specifically, a dinuclear (ferroxidase) site, a b-type heme site, and the binding of a single iron atom at the four-fold molecular axis of the protein shell were observed. In addition to the novel observation of iron at the four-fold pore, these data also reveal that the oxidized form of the protein has a symmetrical ferroxidase site containing two five-coordinate iron atoms. Each iron atom is ligated by four carboxylate oxygen atoms and a single histidyl nitrogen atom. A single water molecule is found within hydrogen bonding distance of the ferroxidase site that bridges the two iron atoms on the side opposite the histidine ligands. Chemical reduction of the protein under anaerobic conditions results in an increase in the average Fe-Fe distance in the ferroxidase site from approximately 3.5 to approximately 4.0 A and the loss of one of the ligands, H130. In addition, there is significant movement of the bridging water molecule and several other amino acid side chains in the vicinity of the ferroxidase site and along the D helix to the three-fold symmetry axis. In contrast to previous work, the higher-resolution data for the dithionite-reduced structure suggest that the heme may be bound in multiple conformations. Taken together, these data allow a molecular movie of the ferroxidase gating mechanism to be developed and provide further insight into the iron uptake and/or release and mineralization mechanism of bacterioferritins in general.  相似文献   
5.
Ferrochelatase catalyzes the formation of protoheme from two potentially cytotoxic products, iron and protoporphyrin IX. While much is known from structural and kinetic studies on human ferrochelatase of the dynamic nature of the enzyme during catalysis and the binding of protoporphyrin IX and heme, little is known about how metal is delivered to the active site and how chelation occurs. Analysis of all ferrochelatase structures available to date reveals the existence of several solvent-filled channels that originate at the protein surface and continue to the active site. These channels have been proposed to provide a route for substrate entry, water entry, and proton exit during the catalytic cycle. To begin to understand the functions of these channels, we investigated in vitro and in vivo a number of variants that line these solvent-filled channels. Data presented herein support the role of one of these channels, which originates at the surface residue H240, in the delivery of iron to the active site. Structural studies of the arginyl variant of the conserved residue F337, which resides at the back of the active site pocket, suggest that it not only regulates the opening and closing of active site channels but also plays a role in regulating the enzyme mechanism. These data provide insight into the movement of the substrate and water into and out of the active site and how this movement is coordinated with the reaction mechanism.  相似文献   
6.
Microbial Reduction of Ketopantoyl Lactone to Pantoyl Lactone   总被引:4,自引:0,他引:4       下载免费PDF全文
The results of a microbial survey study have shown that the ability to reduce added ketopantoic acid (or ketopantoyl lactone) and accumulate pantoic acid (or pantoyl lactone) in the growth medium is widespread among diverse fungi. The reductions generally proceeded with less than full stereoselectivity. However, specific strains of the ascomycete Byssochlamys fulva were found to form D[-]-pantoic acid in unusually high yields and optical purity.  相似文献   
7.
A strain of Fusarium solani isolated from soil by enrichment techniques used propanil (3′, 4′-dichloropropionanilide) as a sole source of organic carbon and energy for growth in pure culture. The primary product of the transformation of propanil by F. solani was isolated and identified as 3,4-dichloroaniline (DCA). This compound accumulated in the medium to a level (80 μg/ml) which stopped further herbicide utilization. Herbicide utilization by F. solani was influenced by various environmental and nutritional factors. It was more sensitive to acid than alkaline pH. Added glucose and yeast extract increased the rate of propanil decomposition, and the reduced aeration retarded growth of the fungus and herbicide utilization. The growth of F. solani on propionate was inhibited by added DCA.  相似文献   
8.
A strain of Fusarium solani isolated from soil by enrichment techniques used propanil (3′, 4′-dichloropropionanilide) as a sole source of organic carbon and energy for growth in pure culture. The primary product of the transformation of propanil by F. solani was isolated and identified as 3,4-dichloroaniline (DCA). This compound accumulated in the medium to a level (80 μg/ml) which stopped further herbicide utilization. Herbicide utilization by F. solani was influenced by various environmental and nutritional factors. It was more sensitive to acid than alkaline pH. Added glucose and yeast extract increased the rate of propanil decomposition, and the reduced aeration retarded growth of the fungus and herbicide utilization. The growth of F. solani on propionate was inhibited by added DCA.  相似文献   
9.
The rate and extent of stereoselective reduction of 1,3-dioxo-2-methyl-2-(3′-oxo-6′-carbomethoxyhexyl)-cyclopentane to form the 1β-hydroxy-2β-methyl isomer by cultures of Schizosaccharomyces pombe ATCC 2476 was dramatically increased by addition to the fermentation of certain α,β-unsaturated ketones and allyl alcohol.  相似文献   
10.
Dimethylsulfoniopropionate (DMSP) is a ubiquitous algal metabolite and common carbon and sulfur source for marine bacteria. DMSP is a precursor for the climatically active gas dimethylsulfide that is readily oxidized to sulfate, sulfur dioxide, methanesulfonic acid, and other products that act as cloud condensation nuclei. Although the environmental importance of DMSP metabolism has been known for some time, the enzyme responsible for DMSP demethylation by marine bacterioplankton, dimethylsufoniopropionate‐dependent demethylase A (DmdA, EC 2.1.1.B5), has only recently been identified and biochemically characterized. In this work, we report the structure for the apoenzyme DmdA from Pelagibacter ubique (2.1 Å), as well as for DmdA co‐crystals soaked with substrate DMSP (1.6 Å) or the cofactor tetrahydrofolate (THF) (1.6 Å). Surprisingly, the overall fold of the DmdA is not similar to other enzymes that typically utilize the reduced form of THF and in fact is a triple domain structure similar to what has been observed for the glycine cleavage T protein or sarcosine oxidase. Specifically, while the THF binding fold appears conserved, previous biochemical studies have shown that all enzymes with a similar fold produce 5,10‐methylene‐THF, while DmdA catalyzes a redox‐neutral methyl transfer reaction to produce 5‐methyl‐THF. On the basis of the findings presented herein and the available biochemical data, we outline a mechanism for a redox‐neutral methyl transfer reaction that is novel to this conserved THF binding domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号