首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  国内免费   1篇
  59篇
  2019年   2篇
  2018年   1篇
  2015年   7篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.  相似文献   
2.
3.

Introduction  

The vast difference in the abundance of different proteins in biological samples limits the determination of the complete proteome of a cell type, requiring fractionation of proteins and peptides before MS analysis.  相似文献   
4.
5.
For patients of a certain type, a number of treatments are available. The effect of each such treatment is assumed to be described by a shift model; it is, however, admitted that there may be an interaction between patient and treatment, meaning in particular that the treatment which is best for one patient is not necessarily best for another. The problem is the following: if each patient is given the treatment which is optimal for that particular patient, will this produce a significant effect and, if so, how large is the effect?  相似文献   
6.
The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study.Enteroviruses are small, nonenveloped, positive-stranded RNA viruses that include many important pathogens, such as poliovirus (PV), coxsackievirus, echovirus, and human rhinovirus. Following virus entry and uncoating, the 7.5-kb enteroviral RNA genome is directly translated into a large polyprotein. This polyprotein is proteolytically processed by the virus-encoded proteases 2Apro, 3Cpro, and 3CDpro into the structural P1 region proteins and the nonstructural P2 and P3 region proteins that are involved in viral RNA replication.All RNA viruses with a positive-stranded genome induce the remodeling of cellular membranes to create a scaffold for genomic RNA replication. The organelle origin and morphology of these membranous replication sites, however, appear to vary for different viruses. Enteroviruses replicate their RNA genomes in nucleoprotein complexes that are associated with small vesicular membrane structures (6). The enteroviral proteins 2B, 2C, and 3A have been implicated in vesicle formation (4, 6, 27), but the mechanism and pathway of membrane reorganization are poorly understood. There are strong indications that these vesicular membranous structures, which are referred to here as “vesicles,” are derived from the early secretory pathway. Vesicles produced in PV-infected cells may form at the endoplasmic reticulum (ER) by the cellular COP-II budding machinery and may therefore share components with the membranous vesicles mediating ER-to-Golgi network transport (26). Further support for the involvement of the secretory pathway stems from the observation that brefeldin A (BFA), a well-known inhibitor of ER-to-Golgi network transport, completely inhibits enteroviral RNA replication (17, 20). In addition, the autophagocytic pathway appears to contribute to the formation of the membrane vesicles, many of which exhibit a double-membrane morphology characteristic of autophagosomes (18, 27). The utilization of individual components or reactions from different membrane metabolic pathways, rather than subversion of an entire pathway in toto, may represent a common strategy for building viral replication machinery.BFA inhibits activation of the small monomeric GTPase ADP ribosylation factor 1 (Arf1), a major regulator of intracellular protein transport (2). Arf1 cycles between an inactive, GDP-bound, cytosolic state and an active, GTP-bound, membrane-associated state, and this cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (13). BFA blocks the activities of the large GEFs GBF1, BIG1, and BIG2 by stabilizing an intermediate, abortive complex with inactive Arf1 (23), thus efficiently preventing activation of Arf1 and eventually formation of transport intermediates.Not only the fact that BFA blocks enteroviral replication suggests a role for Arf1 and/or its large GEFs in this process; recently, it was shown that Arf1 accumulates on membranes during PV infection (3). Arf1 translocation to membranes can be induced independently by enterovirus protein 3A or 3CD in vitro (5), but the underlying mechanisms seem to differ; the 3A protein specifically triggers the recruitment of GBF1 to membranes, most likely through a direct interaction with this GEF (32, 33), whereas 3CD recruits BIG1 and BIG2 to membranes (3). Here, we report the involvement of Arf1 and its large BFA-sensitive GEFs in coxsackievirus B3 (CVB3) replication.  相似文献   
7.
8.
9.
PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIβ recruitment occurred independently of both GBF1 and ACBD3.  相似文献   
10.

Background  

Very often genome-wide data analysis requires the interoperation of multiple databases and analytic tools. A large number of genome databases and bioinformatics applications are available through the web, but it is difficult to automate interoperation because: 1) the platforms on which the applications run are heterogeneous, 2) their web interface is not machine-friendly, 3) they use a non-standard format for data input and output, 4) they do not exploit standards to define application interface and message exchange, and 5) existing protocols for remote messaging are often not firewall-friendly. To overcome these issues, web services have emerged as a standard XML-based model for message exchange between heterogeneous applications. Web services engines have been developed to manage the configuration and execution of a web services workflow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号