首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   14篇
  66篇
  2022年   1篇
  2015年   4篇
  2014年   9篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   
2.
In Western Europe, many pond owners introduce amphibians for ornamental purposes. Although indigenous amphibians are legally protected in most European countries, retailers are circumventing national and international legislation by selling exotic nonprotected sibling species. We investigated to what extent non‐native species of the European water frog complex (genus Pelophylax) have become established in Belgium, using morphological, mitochondrial and nuclear genetic markers. A survey of 87 sampling sites showed the presence of non‐native water frogs at 47 locations, mostly Marsh frogs (Pelophylax ridibundus). Surprisingly, at least 19% of all these locations also harboured individuals with mitochondrial haplotypes characteristic of Anatolian water frogs (Pelophylax cf. bedriagae). Nuclear genotyping indicated widespread hybridization and introgression between P. ridibundus and P. cf. bedriagae. In addition, water frogs of Turkish origin obtained through a licensed retailer, also contained P. ridibundus and P. cf. bedriagae, with identical haplotypes to the wild Belgian populations. Although P. ridibundus might have invaded Belgium by natural range expansion from neighbouring countries, our results suggest that its invasion was at least partly enhanced by commercial trade, with origins as far as the Middle East. Also the invasion and rapid spread of Anatolian lineages, masked by their high morphological similarity to P. ridibundus, is likely the result of unregulated commercial trade. We expect that Anatolian frogs will further invade the exotic as well as the native range of P. ridibundus and other Pelophylax species elsewhere in Western and Central Europe, with risks of large‐scale hybridization and introgression.  相似文献   
3.
Muscarinic activation of tracheal smooth muscle (TSM) involves a M3AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Gαi/o subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Gαq16, whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Gαq15/16 stimulated the NPR-GC. Coupling of αq16 to M3AChR is supported by MAS decreased [3H]QNB binding, being abolished after M3AChR-4-DAMP-alkylation. Anti-i3M3AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i3M3AChR (M3P) was more potent than MAS increasing GTPγ [35S] and decreasing the [3H]QNB activities. Coupling between NPR-GC and Gαq16 was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Gαq16, also showing an immunoreactive heterotrimeric-G-β -subunit. These data support the existence of a novel transducing cascade, involving Gαq16β γ coupling M3AChR to NPR-GC.  相似文献   
4.
Several lines of evidence with intact tissues suggest amino acid transport is mediated by a proton-amino acid symport (L Rheinhold, A Kaplan 1984 Annu Rev Plant Physiol 35: 45-83). However, biochemical studies of proton-coupled amino acid transport in isolated membrane vesicles have not been reported. In the experiments presented here, amino acid transport was studied in membrane vesicles isolated from zucchini (Cucurbita pepo L. cv Black Beauty) hypocotyls. An imposed pH gradient (basic interior) was used to energize isolated membrane vesicles and drive amino acid transport. Proton-coupled amino acid accumulation was demonstrated for alanine, glutamate, glutamine, leucine, and tabtoxinine-β-lactam. Alanine transport into the isolated membrane vesicles was studied in detail. Alanine transport was protonophore sensitive and accumulation ratios exceeding 10 times that predicted by diffusion alone were observed. ΔpH-Dependent alanine transport exhibited saturation kinetics, suggesting translocation was mediated via a carrier transport system. In support of that conclusion, 50 micromolar N,N′-dicyclohexylcarbodiimide, a hydrophobic modifier of protein carboxyls, completely inhibited proton-coupled alanine accumulation. Transport activity, equilibrated on a linear sucrose gradient, peaked at 1.16 grams per cubic centimeter and co-migrated with a plasmalemma marker (vanadate-sensitive K+-Mg2+-ATPase). These results provide direct evidence in support of a proton-amino acid symport in the plasmalemma of higher plants.  相似文献   
5.
Tabtoxinine-β-lactam (T-β-L), a unique amino acid, is a toxin produced by several closely related pathovars of Pseudomonas syringae. These chlorosis-inducing pathogens establish themselves in the apoplastic space of their hosts where they release the toxin. We have examined the transport of T-β-L into cultured corn (Zea mays cv Black Mexican) cells using [14C]T-β-L. The pH optimum of the uptake of the toxin was between 4.0 and 5.5 pH units. Toxin uptake was inhibited by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone, and by the sulfhydryl re-agent, N-ethylmaleimide. Tabtoxinine-β-lactam transport exhibited saturation kinetics that were described by the Michaelis-Menton equation for toxin concentrations of 1 millimolar and less. However, the transport of toxin in concentrations greater than 1 millimolar was not described by Michaelis-Menten kinetics. Glutamate and alanine exhibited similar transport kinetics with a transition to non-Michaelis-Menten kinetics when the amino acid concentration exceeded 1 millimolar. Hill numbers for glutamate, alanine, and T-β-L ranged from 0.6 to 0.8. Methionine, alanine, tyrosine, glutamine, glutamate, and arginine were inhibitors of toxin transport. Alanine was a competitive inhibitor of the transport of T-β-L and of glutamate. The data are consistent with T-β-L being transported into the plant cell through an amino acid transport system.  相似文献   
6.
The primary storage protein of oat (Avena sativa L.) seeds, globulin, was shown to have a specific carbohydrate-binding activity. The globulin was capable of hemagglutinating rabbit red blood cells and this hemagglutination was inhibited by the β-glucan, laminarin, as well as by carbohydrate which had been cleaved from the native globulin. Globulin with carbohydrate-binding activity was isolated from cell wall preparations and from defatted flour. The lectin activity apparently resides in the α-subunit of the globulin and has affinity for the carbohydrate which is O-glycosidically linked to the globulin. A portion of this carbohydrate is attached to the β-subunit. Two affinity columns were synthesized utilizing laminarin and the carbohydrate from the native globulin as ligands. The hemagglutinating activity bound to both of these columns. The activity was specifically eluted from the globulin-carbohydrate affinity column with carbohydrate cleaved from native globulin by an alkali-catalyzed β-elimination. The possible roles of this unique self-binding capacity are discussed.  相似文献   
7.
One‐third of the human proteome is comprised of membrane proteins, which are particularly vulnerable to misfolding and often require folding assistance by molecular chaperones. Calnexin (CNX), which engages client proteins via its sugar‐binding lectin domain, is one of the most abundant ER chaperones, and plays an important role in membrane protein biogenesis. Based on mass spectrometric analyses, we here show that calnexin interacts with a large number of nonglycosylated membrane proteins, indicative of additional nonlectin binding modes. We find that calnexin preferentially bind misfolded membrane proteins and that it uses its single transmembrane domain (TMD) for client recognition. Combining experimental and computational approaches, we systematically dissect signatures for intramembrane client recognition by calnexin, and identify sequence motifs within the calnexin TMD region that mediate client binding. Building on this, we show that intramembrane client binding potentiates the chaperone functions of calnexin. Together, these data reveal a widespread role of calnexin client recognition in the lipid bilayer, which synergizes with its established lectin‐based substrate binding. Molecular chaperones thus can combine different interaction modes to support the biogenesis of the diverse eukaryotic membrane proteome.  相似文献   
8.
9.
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.  相似文献   
10.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号