首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   19篇
  2022年   2篇
  2021年   2篇
  2017年   3篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1985年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1962年   1篇
  1960年   6篇
  1958年   3篇
  1956年   1篇
  1954年   1篇
  1953年   3篇
  1951年   1篇
  1948年   1篇
  1938年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
1.
2.
Site-directed mutagenesis is used to identify amino acid residues that dictate reported differences in substrate specificity between rat hepatic neutral cytosolic cholesteryl ester hydrolase (hncCEH) and rat lung carboxylesterase (LCE), proteins differing by only 4 residues in their primary sequences. Beginning with LCE, the substitution Met(423) --> Ile(423) alone or in combination with other mutations increased activity with p-nitrophenylcaprylate (PNPC) relative to more hydrophilic p-nitrophenylacetate (PNPA), typical of hncCEH. The substitution Thr(444) --> Met(444) was necessary but not sufficient for expression of cholesteryl esterase activity in COS-7 cells. The substitution Asn(506) --> Ser(506), creating a potential phosphorylation site, uniformly increased activity with both PNPA and PNPC, was necessary but not sufficient for expression of cholesteryl esterase activity and conferred susceptibility to activation by cAMP-dependent protein kinase, a property of hncCEH. The 3 mutations in combination were necessary and sufficient for expression of cholesteryl esterase activity by the mutated LCE. The substitution Gln(186) --> Arg(186) selectively reduced esterase activity with PNPA and PNPC but was not required for cholesteryl esterase activity. Homology modeling from x-ray structures of acetylcholinesterases is used to propose three-dimensional models for hncCEH and LCE that provide insight into the effects of these mutations on substrate specificity.  相似文献   
3.
4.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is rapidly metabolized to a 1-methyl-4-phenylpyridinium species (MPP+) in the squirrel monkey. After administration of toxic doses of MPTP, the concentration of MPP+ in the substantia nigra appears to increase during the first 72 hours, reaching the highest concentration of any central nervous system (CNS) tissue studied. In contrast, the concentration of this compound in other brain areas suggested time dependent elimination during the same period. Pretreatment of animals with the monoamine oxidase (MAO) inhibitor pargyline blocks both the neurotoxic action and the biotransformation of MPTP. In animals given pargyline and MPTP, initial MPTP levels are much higher in all brain regions than in those not receiving pargyline, but by 12 hours, MPTP levels had fallen rapidly in all regions except the substantia nigra and the eye. It may be that the selective toxicity of MPTP is related in some way to the accumulation of its oxidized metabolite in the substantia nigra.  相似文献   
5.
The results demonstrate the first attempt to determine metallothionein turnover in the whole soft tissues of mussels Mytilus edulis exposed to cadmium. Half-lives for metallothionein and cadmium are 25 and 300 days, respectively. As metallothionein degrades the released cadmium induces further synthesis of the protein, to which the metal becomes resequestered. The slow metallothionein turnover rates (compared with mammals) and the lack of significant cadmium excretion testify to the relatively stable nature of the cadmium-metallothionein complex in these invertebrates and supports the view of a detoxifying role for metallothionein in the mussels.  相似文献   
6.
Summary A simple procedure has been developed for the dissociation of active molecules of glutamate oxaloacetate transaminase (GOT: E.C. 2.6.1.1) into protomers and for the reassociation of the subunits into active enzymes. Results of experiments in which the protomers of genetically controlled electrophoretic variants of GOT of Triticum aestivum and of several related species were dissociated and recombined in crude tissue extracts and in partially purified preparations support the hypothesis that the enzyme exists functionally as a dimer in the Triticinae.This paper is Technical Article No. 13157 of the Texas Agricultural Experiment Station.  相似文献   
7.
Juvenile turbot,Scophthalmus maximus (L.), were exposed to 0.58 μg 1−1 Aroclor 1254 in seawater, to sediments containing 100, 60 and 1 ppm or fed with cockle containing 20 ppm PCB (polychlorinated biphenyls). Concentration factors for liver and muscle were 104 and 103, respectively, for uptake of PCB from seawater. Contamination of muscle was similar to that of sediments containing 1 and 60 ppm PCB to which turbot were exposed, but less than the 20 ppm in their experimental diet. Contamination of flatfish in the North Sea area is compared with the levels of PCB in the flounder,Platichthys flesus (L.), in the River Thames and predictable values for uptake of PCB from different pathways discussed.  相似文献   
8.
9.
10.
The accurate copying of genetic information in the double helix of DNA is essential for inheritance of traits that define the phenotype of cells and the organism. The core machineries that copy DNA are conserved in all three domains of life: bacteria, archaea, and eukaryotes. This article outlines the general nature of the DNA replication machinery, but also points out important and key differences. The most complex organisms, eukaryotes, have to coordinate the initiation of DNA replication from many origins in each genome and impose regulation that maintains genomic integrity, not only for the sake of each cell, but for the organism as a whole. In addition, DNA replication in eukaryotes needs to be coordinated with inheritance of chromatin, developmental patterning of tissues, and cell division to ensure that the genome replicates once per cell division cycle.The genetic information within the cells of our body is stored in the double helix of DNA, a long cylinderlike structure with a radius that is only 10 Å or one billionth of a meter but can be of considerable length. A single DNA molecule within a bacterium that grows in our gut flora is approximately 5 million base pairs in length and when stretched out, is about 1.6 mm in length, roughly the diameter of a pinhead. In contrast, the single DNA molecule in the largest human chromosome is 245,203,898 base pairs or about 8.33 cm long. The entire human genome, consisting of its 24 different chromosomes in a male is about 3 billion base pairs or 1 m long. Each cell in our body, with rare exceptions, contains two copies of the genome and thus 2 m of total DNA. Thus the scale and complexity of duplicating genomes is remarkable. For example, ∼2200 human cells can sit on the top of a 1.5 mm pinhead and when extracted and laid out in a line, the DNA from these cells would be ∼4.5 km (2.8 miles) long. In our body, about 500–700 million new blood cells are born every minute in the bone marrow (Doulatov et al. 2012), containing a total of about 1 million km of DNA, or enough DNA to wrap around the equator of the earth 25 times. Thus DNA replication is a serious business in our body, occurring from the time that a fertilized egg first begins duplicating DNA to yield the many trillions of cells that make up an adult body and continuing in all tissues of the adult body throughout our life. The amount of DNA duplicated in an entire human body represents an unimaginable amount of information transfer. Moreover, each round of duplication needs to be highly accurate, making one mistake in less than 100 million bases copied per cell division. How copying of the double helix occurs and how it is so highly accurate is the topic of this collection. Inevitably the processes of accurate copying of the genome can go awry, yielding mutations that affect our lives, and thus the collection outlines the disorders that accelerate human disease.However, the problem of copying DNA is much more complicated than indicated above. The 2 m of DNA in each human cell is wrapped up with histone proteins within the cell’s nucleus that is only about 5 μm wide, presenting a compaction in DNA length of about 2 million-fold. How can the copying process deal with the fact that the DNA is wrapped around proteins and scrunched into a volume that creates a spatial organization problem of enormous magnitude? Not only is the DNA copied, but the proteins associated with the DNA need to be duplicated, along with all the chemical modifications attached to DNA and histones that greatly influence developmental patterning of gene expression. The protein machineries that replicate DNA and duplicate proteins within the chromosomes are some of the most complex and intriguing machineries known. Furthermore, the regulations of the processes are some of the most complex because they need to ensure that each DNA molecule in each chromosome is copied once, and only once each time before a cell divides. Errors in the regulation of DNA replication lead to accelerated mutation rates, often associated with increased rates of cancer and other diseases.The process of accurately copying a genome can be broken down into various subprocesses that combine to provide efficient genome duplication. Central to the entire process is the machinery that actually copies the DNA with high fidelity, including proteins that start the entire process and the proteins that actually copy one helix to produce two. Superimposed on this fundamental process are mechanisms that detect and repair errors and damage to the DNA. Also associated with the DNA replication apparatus are the proteins that ensure that the histone proteins and their modifications in chromatin are inherited along with the DNA. Finally, other machineries cooperate with the DNA replication apparatus to ensure that the resulting two DNA molecules, the sister chromatids, are tethered together until the cell completes duplicating all of its DNA and segregates the sister chromatids evenly to the two daughter cells. Only by combining all of these processes can genetic inheritance ensure that each cell has a faithful copy of its parent’s genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号