首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   9篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1993年   1篇
  1990年   2篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
2.
Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium–potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(μ2–4-N,N-dimethylaminobenzoate-κO)(μ2–4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2O3 nanomaterials to obtain a nanohybrid La2O3/K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2O3/K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2O3/K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.  相似文献   
3.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
4.
Although theory indicates that natural selection can facilitate speciation as a by-product, demonstrating ongoing speciation via this by-product mechanism in nature has proven difficult. We examined morphological, molecular, and behavioral data to investigate ecology's role in incipient speciation for a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes. We show that adaptation to divergent predator regimes is driving ecological speciation as a by-product. Divergence in body shape, coupled with assortative mating for body shape, produces reproductive isolation that is twice as strong between populations inhabiting different predator regimes than between populations that evolved in similar ecological environments. Gathering analogous data on reproductive isolation at the interspecific level in the genus, we find that this mechanism of speciation may have been historically prevalent in Gambusia. These results suggest that speciation in nature can result as a by-product of divergence in ecologically important traits, producing interspecific patterns that persist long after speciation events have completed.  相似文献   
5.
6.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   
7.
Over the past century and half since the process of natural selection was first described, one enduring question has captivated many, "how predictable is evolution?" Because natural selection comprises deterministic components, the course of evolution may exhibit some level of predictability across organismal groups. Here, I provide an early appraisal of the utility of one particular approach to understanding the predictability of evolution: generalized models of divergent selection (GMDS). The GMDS approach is meant to provide a unifying framework for the science of evolutionary prediction, offering a means of better understanding the causes and consequences of phenotypic and genetic evolution. I describe and test a GMDS centered on the evolution of body shape, size of the gonopodium (sperm-transfer organ), steady-swimming abilities, fast-start swimming performance, and reproductive isolation between populations in Gambusia fishes (Family Poeciliidae). The GMDS produced some accurate evolutionary predictions in Gambusia, identifying variation in intensity of predation by piscivorous fish as a major factor driving repeatable and predictable phenotypic divergence, and apparently playing a key role in promoting ecological speciation. Moreover, the model's applicability seems quite general, as patterns of differentiation in body shape between predator regimes in many disparate fishes match the model's predictions. The fact that such a simple model could yield accurate evolutionary predictions in distantly related fishes inhabiting different geographic regions and types of habitat, and experiencing different predator species, suggests that the model pinpointed a causal factor underlying major, shared patterns of diversification. The GMDS approach appears to represent a promising method of addressing the predictability of evolution and identifying environmental factors responsible for driving major patterns of replicated evolution.  相似文献   
8.
The study of male genital diversity has long overshadowed evolutionary inquiry of female genitalia, despite its nontrivial diversity. Here, we identify four nonmutually exclusive mechanisms that could lead to genital divergence in females, and potentially generate patterns of correlated male–female genital evolution: (1) ecological variation alters the context of sexual selection (“ecology hypothesis”), (2) sexually antagonistic selection (“sexual‐conflict hypothesis”), (3) female preferences for male genitalia mediated by female genital traits (“female‐choice hypothesis”), and (4) selection against inter‐population mating (“lock‐and‐key hypothesis”). We performed an empirical investigation of all four hypotheses using the model system of Bahamas mosquitofish inhabiting blue holes that vary in predation risk. We found unequivocal support for the ecology hypothesis, with females exhibiting a smaller genital opening in blue holes containing piscivorous fish. This is consistent with stronger postmating female choice/conflict when predators are present, but greater premating female choice in their absence. Our results additionally supported the lock‐and‐key hypothesis, uncovering a pattern of reproductive character displacement for genital shape. We found no support for the sexual conflict or female choice hypotheses. Our results demonstrate a strong role for ecology in generating female genital diversity, and suggest that lock‐and‐key may provide a viable cause of female genital diversification.  相似文献   
9.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   
10.
Environmental variation drives ecological and phenotypic change. How predictable is differentiation in response to environmental change? Answering this question requires the development and testing of multifarious a priori predictions in natural systems. We employ this approach using Gobiomorus dormitor populations that have colonized inland blue holes differing in the availability of fish prey. We evaluated predictions of differences in demographics, habitat use, diet, locomotor and trophic morphology, and feeding kinematics and performance between G. dormitor populations inhabiting blue holes with and without fish prey. Populations of G. dormitor independently diverged between prey regimes, with broad agreement between observed differences and a priori predictions. For example, in populations lacking fish prey, we observed male‐biased sex ratios, a greater use of shallow‐water habitat, and larger population diet breadths as a result of greater individual diet specialization. Furthermore, we found predictable differences in body shape, mouth morphology, suction generation capacity, strike kinematics, and feeding performance on different prey types, consistent with the adaptation of G. dormitor to piscivory when coexisting with fish prey and to feeding on small invertebrates in their absence. The results of the present study suggest great potential in our ability to predict population responses to changing environments, which is an increasingly important capability in a human‐dominated, ever‐changing world. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 588–607.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号