首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
排序方式: 共有64条查询结果,搜索用时 31 毫秒
1.
2.
 Because of the role major histocompatibility complex (MHC) class I b molecules may play during mouse embryonic development, we thought it would be interesting to search for additional MHC class I b molecules that might be expressed in preimplantation embryos, and in particular in the trophoblastic lineage. We therefore screened a mouse preimplantation blastocyst cDNA library for MHC class I sequences. This search led to the identification and characterization of a new MHC class I b gene, blastocyst MHC. Sequences identical to the exons and 3′ untranslated region of this gene have been found in many laboratory mouse strains, as well as in the related mouse species Mus spreciligus. The presence of this gene in mouse strains of different MHC class I haplotypes argues that blastocyst MHC is a unique, newly-described gene rather than a new allele of a previously described mouse MHC class I gene. Blastocyst MHC has the structure of an MHC class I b gene, with the six exons characteristic of T-region genes. It is linked to H2-D. The amino acid sequence encoded by this gene maintains all the features of a functional antigen-presentation domain. The blastocyst MHC gene, like the human class I b gene HLA-G, is expressed at the blastocyst stage and in the placenta, and may be the mouse analog for HLA-G. Received: 31 May 1996 / Revised: 19 August 1996  相似文献   
3.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
4.
The production of transgenic mice by embryo microinjection   总被引:2,自引:0,他引:2  
The production of transgenic mice is a technology of great utility in the dissection of complex biological processes. This article is intended as a detailed primer for people interested in learning to produce transgenic mice, and discusses equipment, methods, and future directions for this technique.  相似文献   
5.
6.
The NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mouse strain, commonly known as NSG (for NOD SCID Gamma) is severely immunodeficient and thus is an excellent recipient for xenografts, and in particular for engrafting human tumor cells and human hematopoietic stem cells. In the latter case, these cells give rise to many human hematopoetic lineages in their NSG hosts, resulting in recapitulation of many of the features of a human immune system. However, the immune system of these ??humanized mice?? (huMice) is not completely functional, in part because of a lack of expression of necessary human cytokines and HLA molecules by NSG host tissues. In order to facilitate the genetic modification of this strain in order to improve the huMouse model, we have created germline competent ES cells of this strain in which such modifications can be carried out.  相似文献   
7.
8.
9.

Public gardens can help prevent detrimental effects of plant invasions by collecting and sharing data on taxa spreading from cultivation early in the invasion process, thereby acting as sentinels of plant invasion. Existing initiatives have called for public gardens to adopt measures preventing plant invasion, but it is unclear what actions individual gardens are implementing, as there is no formal mechanism for communicating their progress. This study used internal lists of escaping taxa from seven public gardens in the Midwestern United States and Canada to demonstrate how public gardens can collectively contribute data that is critical to assessing potential invasiveness. It also reveals methodological differences in how gardens develop their lists of escaping plants, leading to recommendations for standardization. Data pooled across gardens yielded 769 species spreading from cultivation at one or more gardens. Eight woody species were listed by all gardens despite not consistently being recognized as invasive by states and provinces containing the gardens; some species recorded by multiple gardens did not appear on any invasive lists. While it may be premature to call taxa escaping from cultivation at a few public gardens “invasive” or even “potentially invasive”, these plants should be monitored and evaluated with this information shared to facilitate stronger conclusions about risk. Thus, public gardens have a unique expertise in assisting invasive plant efforts as sentinels, particularly if challenges related to methodological inconsistencies and data sharing are suitably addressed, which is herein recommended through the adoption of a set of standardized guidelines.

  相似文献   
10.

Background

Metastasis, the process whereby cancer cells spread, is in part caused by an incompletely understood interplay between cancer cells and the surrounding stroma. Gene expression studies typically analyze samples containing tumor cells and stroma. Samples with less than 50% tumor cells are generally excluded, thereby reducing the number of patients that can benefit from clinically relevant signatures.

Results

For a head-neck squamous cell carcinoma (HNSCC) primary tumor expression signature that predicts the presence of lymph node metastasis, we first show that reduced proportions of tumor cells results in decreased predictive accuracy. To determine the influence of stroma on the predictive signature and to investigate the interaction between tumor cells and the surrounding microenvironment, we used laser capture microdissection to divide the metastatic signature into six distinct components based on tumor versus stroma expression and on association with the metastatic phenotype. A strikingly skewed distribution of metastasis associated genes is revealed.

Conclusion

Dissection of predictive signatures into different components has implications for design of expression signatures and for our understanding of the metastatic process. Compared to primary tumors that have not formed metastases, primary HNSCC tumors that have metastasized are characterized by predominant down-regulation of tumor cell specific genes and exclusive up-regulation of stromal cell specific genes. The skewed distribution agrees with poor signature performance on samples that contain less than 50% tumor cells. Methods for reducing tumor composition bias that lead to greater predictive accuracy and an increase in the types of samples that can be included are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号