首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   8篇
  167篇
  2019年   2篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   2篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   4篇
  1965年   1篇
排序方式: 共有167条查询结果,搜索用时 0 毫秒
1.
In an island population receiving immigrants from a larger continental population, gene flow causes maladaptation, decreasing mean fitness and producing continued directional selection to restore the local mean phenotype to its optimum. We show that this causes higher plasticity to evolve on the island than on the continent at migration-selection equilibrium, assuming genetic variation of reaction norms is such that phenotypic variance is higher on the island, where phenotypes are not canalized. For a species distributed continuously in space along an environmental gradient, higher plasticity evolves at the edges of the geographic range, and in environments where phenotypes are not canalized. Constant or evolving partially adaptive plasticity also alleviates maladaptation owing to gene flow in a heterogeneous environment and produces higher mean fitness and larger population size in marginal populations, preventing them from becoming sinks and facilitating invasion of new habitats. Our results shed light on the widely observed involvement of partially adaptive plasticity in phenotypic clines, and on the mechanisms causing geographic variation in plasticity.  相似文献   
2.
Estimating density dependence in time-series of age-structured populations   总被引:4,自引:0,他引:4  
For a life history with age at maturity alpha, and stochasticity and density dependence in adult recruitment and mortality, we derive a linearized autoregressive equation with time-lags of from 1 to alpha years. Contrary to current interpretations, the coefficients for different time-lags in the autoregressive dynamics do not simply measure delayed density dependence, but also depend on life-history parameters. We define a new measure of total density dependence in a life history, D, as the negative elasticity of population growth rate per generation with respect to change in population size, D = - partial differential lnlambda(T)/partial differential lnN, where lambda is the asymptotic multiplicative growth rate per year, T is the generation time and N is adult population size. We show that D can be estimated from the sum of the autoregression coefficients. We estimated D in populations of six avian species for which life-history data and unusually long time-series of complete population censuses were available. Estimates of D were in the order of 1 or higher, indicating strong, statistically significant density dependence in four of the six species.  相似文献   
3.
The demographic variance of an age-structured population is defined. This parameter is further split into components generated by demographic stochasticity in each vital rate. The applicability of these parameters are investigated by checking how an age-structured population process can be approximated by a diffusion with only three parameters. These are the deterministic growth rate computed from the expected projection matrix and the environmental and demographic variances. We also consider age-structured populations where the fecundity at any stage is either zero or one, and there is neither environmental stochasticity nor dependence between individual fecundity and survival. In this case the demographic variance is uniquely determined by the vital rates defining the projection matrix. The demographic variance for a long-lived bird species, the wandering albatross in the southwestern part of the Indian Ocean, is estimated. We also compute estimates of the age-specific contributions to the total demographic variance from survival, fecundity and the covariance between survival and fecundity.  相似文献   
4.
    
We develop quantitative-genetic models for the evolution of multiple traits under maternal inheritance, in which traits are transmitted through non-Mendelian as well as Mendelian mechanisms, and maternal selection, in which the fitness of offspring depends on their mother's phenotype as well as their own. Maternal inheritance results in time lags in the evolutionary response to selection. These cause a population to evolve for an indefinite number of generations after selection ceases and make the rate and direction of evolution change even when the strength of selection and parameters of inheritance remain constant. The rate and direction of evolution depend on the inheritance of traits that are not under selection, unlike under classical Mendelian inheritance. The models confirm earlier findings that the response to selection can be larger or smaller than what is possible with simple Mendelian inheritance, and even in a direction opposite to what selection favors. Maternal selection, in which a mother's phenotype influences her offspring's fitness, is frequency-dependent and can cause a population to evolve maladaptively away from a fitness peak, regardless of whether traits are transmitted by Mendelian or maternal inheritance. Maternal selection differs from other forms of selection in that its force depends not only on the fitness function but also on the phenotypic resemblance of parents and offspring.  相似文献   
5.
We study the dynamics of evolutionary recovery after an abrupt environmental shift in a density‐regulated population with evolving plasticity. Maladaptation to the new environment initially causes the population to decline, until adaptive phenotypic plasticity and genetic evolution restore positive population growth rate. We assume that selection on a quantitative trait is density‐independent and that the initial cost of plasticity is much lower than the benefit of the initial plastic response. The initial partially adaptive plasticity reduces the effective magnitude of the environmental shift, whereas evolution of plasticity increases the rate of adaptation. Both effects greatly facilitate population persistence. In contrast, density dependence of population growth always hinders persistence. With θ‐logistic population regulation, a lower value of θ produces a faster initial population decline and a higher extinction risk.  相似文献   
6.
7.
    
Russell Lande 《Genetics》1977,86(2):485-498
The traditional models of the effect of assortative mating and inbreeding on the genetic variance of polygenic characters (Fisher 1918; Wright 1921) presume that there is no natural selection or mutation. In a large population, the genetic variance determined by additive genes may then increase by up to a factor of two with local inbreeding, and even more with assortative mating. The classical models are still used to interpret data from natural populations. But contrary to their assumptions, most metrical characters in natural populations are usually thought to be under a type of selection which depletes polygenic variation. Mutation is then necessary to maintain genetic variation. The present models show that with the additional features of mutation and selection, in a large population, the mating system has no influence on the amount of genetic variability maintained by additive genes.  相似文献   
8.
9.
Internal waves increase the average light intensity experiencedby phytoplankton and augment the compensation depth below whichno net photosynthesis occurs. These effects may be quite largein eutrophic waters with moderate or high light attenuationcoefficients. Data on internal waves and light attenuation canbe used to correct standard estimates of (new) primary productionin the lower euphotic zone based on uptake rates of carbon ornitrogen isotopes.  相似文献   
10.
  总被引:2,自引:0,他引:2  
Quantitative genetic models are used to investigate a mechanism of speciation involving natural and sexual selection on a population with more than one ecological niche available. Female choice of mates, based on ecologically important characters, can initiate a sudden shift into a new niche. Whether males alone or both sexes make the transition depends strongly on the genetic correlation between homologous male and female characters. This mode of speciation rapidly produces premating and postmating isolating barriers, as well as ecological separation, between populations that can then coexist in the same area as distinct species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号